

Workshop on anonymization Berlin, March 19, 2015

Basic Knowledge

Terms, Definitions and general techniques

Murat Sariyar TMF

Background

Aims of Anonymization

Relevant terms

Anonymization Techniques

Further Issues

Background

Large amount of person-specific data are collected, both by public institutions and by private entities

Laws and regulations require that some collected data must be made public, for example: Census data

Data sets

Health-care: Clinical studies, hospital discharge databases
Genetic datasets: 1000 genomes, HapMap, TCGA, ...

Contracts alone cannot guarantee that sensitive data will not be carelessly misplaced. Can anonymization guarantees that?

Sweeney (1997)

MF

ssac	huse		s pital dis dical Data R				
SSN			Date Of Birth	Sex	ZIP Marital Status		Problem
			09/27/64	female	02139	divorced	hypertension
	8. B	2	09/30/64	female	02139	divorced	obesity
		asian	04/18/64	male	02139	married	chest pain
	100	asian	04/15/64	male	02139	married	obesity
	8	black	03/13/63	male	02138	married	hypertension
		black	03/18/63	male	02138	married	shortness of breat
	2 8	black	09/13/64	female	02141	married	shortness of breat
	2 2	black	09/07/64	female	02141	married	obesity
	1	white	05/14/61	male	02138	single	chest pain
	8 6	white	05/08/61	male	02138	single	obesity
		white	09/15/61	female	02142	widow	shortness of breatl

Voter List

[Name	Address	City	ZIP	DOB	Sex	Party	
ĺ								
ł								
1	Sue J. Carlson	1459 Main St.	Cambridge	02142	9/15/61	female	democrat	
Г								

Figure / -dentifying anonymous data by linking to external data

Public voter dataset

(5-digit ZIP code, birth date, gender) uniquely identify 87% of the population in the U.S.

There are different communities in which research regarding anonymization is done

- Database community
- Statistical disclosure community
- Cryptography community

Aims of Anonymization

ISO 29100:2011: "Anonymization is the **process** by which personally **identifiable** information (PII) is **irreversibly** altered in such a way that a PII principal can no longer be **identified** directly or indirectly, either by the PII **controller** alone or in collaboration with any other party."

Aim: to produce **"open data"** whilst mitigating the risks for individuals concerned

Problem: Creating an anonymous dataset whilst retaining as much of the underlying information as required for the task (**usefulness**)

A table is **minimal anonymous** if it satisfies the given privacy requirement and if the sequence of anonymization operations cannot be reduced without violating the requirement

A table is **optimal anonymous** if it satisfies the given privacy requirement and contains most information according to the chosen **information metric** among all satisfying tables

Finding the optimal anonymization is NP-hard...

General purpose metric (principle of minimal distortion) Information loss of generalization G: $\{c_1, ..., c_n\} \rightarrow p$

$$I(G) = Info(S_p) - \sum_{i} \frac{N_{ci}}{N_p} Info(S_{ci})$$

 $Info(S) = -\sum_{i} p_i \log p_i$, p_i is the percentage of label *i*

Special purpose metric: e.g. retain usefullness for classification => In general, list of data uses (e.g. regression models, association rules, other data mining techniques, etc.)

Trade-off Metric: maximizes the information gained per each loss of privacy

TMF – Technologie, Methods and Infrastucture for Networked Medical Research Workshop Anonymisation, March 19, 2015

Relevant terms

Kind of attributes:

- (1) Unique Identifiers (e.g., social security number)
- (2) Quasi-Identifiers (e.g., Zip-Code) => QIDs
- (3) Sensitive attributes (exhibiting a special characteristic)
- (4) Non-sensitive attributes

OECD-Definition for a Quasi-Identifier:

Variable values or combinations of variable values within a dataset that are not structural uniques but might be empirically unique and therefore in principle uniquely identify a population unit.

Should contain an attribute A if an attacker could potentially obtain A from other external resources.

The choice of QIDs remains an open issue

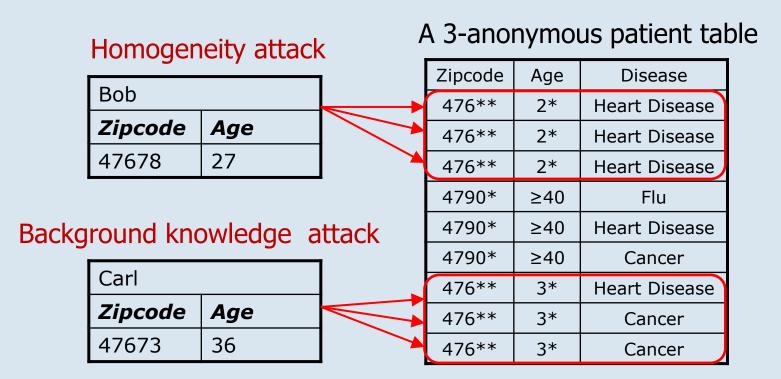
TMF – Technologie, Methods and Infrastucture for Networked Medical Research Workshop Anonymisation, March 19, 2015

What is disclosure risk?

- **Singling out**: isolate records identifying an individual
- **Record Linkage**: classify recs as belonging to the same individual
- Attribute Linkage: Infer sensitive values from the existing attributes
- Table Linkage:
 Infer presence of an individual
- **Probabilistic Inference**: Change belief on sensitive information

Attacks are context-specific Example: Attacks on k-Anonymity

TMF



Anonymization techniques

Randomization

- Noise addition
- Permutation

Generalization (replacing QIDs with more general values)

- Aggregation
- K-Anonymity (inference attacks are still possible)
- L-Diversity (semantic meaning of attributes are not considered: Gastric ulcer, Gastritis)
- T-Closeness (mirroring the initial distribution in each equivalence class; skewness attack)

Suppression

• Tuple and cell suppression

These are criteria not techniques:

- K-Anonymity
- L-Diversity
- T-Closeness

And there is no hierarchy!

- K-Anonymity protects against identity disclosure
- L-diversity and T-Closeness protect against attribute disclosure

What about Fung et al. (2010) statement:

"...distinct I-diversity privacy model automatically satisfies kanonymity, where k = I, because each qid group contains at least I records."

?

TMF – Technologie, Methods and Infrastucture for Networked Medical Research Workshop Anonymisation, March 19, 2015

Generalization and Suppression (hide some details in QID)

- Replace some values with a parent value in a taxonomy
- ✤ Full-domain and local (subtree, cell) generalization
- Suppression (see former slide)

Anatomization and Permutation (structural changes)

- ✤ Deassociate the relationship between QIDs and sensitive attributes
- ✤ Partition into groups and shuffle sensitive values within each group

Perturbation

Additive Noise (Randomization; independent of other recs => data streams), Data swapping, synthetic data generation

Anonymization techniques: generalization

TMF

Zip	Age	Nationality	Disease		Zip	Age	Nationality
130 <u>5</u> 3	28	Russian	Heart	1	130**	<30	*
3068	29	American	Heart	1 1	130**	<30	*
3068	21	Japanese	Flu	1	130**	<30	*
30 <mark>53</mark>	23	American	Flu	1	130**	<30	*
4853	50	Indian	Cancer		1485*	>40	*
1 <mark>85</mark> 3	55	Russian	Heart		1485*	>40	*
8 <u>5</u> 0	47	American	Flu	1	1485*	>40	*
48 <u>5</u> 0	59	American	Flu	1	1485*	>40	*
3053				1	130**	30-40	*
3053	Equivalence Class: Group of k-anonymous records that share the same value				130**	30-40	*
3068					130**	30-40	*
13068		Quasi-identif	130**	30-40	*		

Disease

Heart

Heart

Flu

Flu

Cancer

Heart

Flu

Flu

Cancer

Cancer

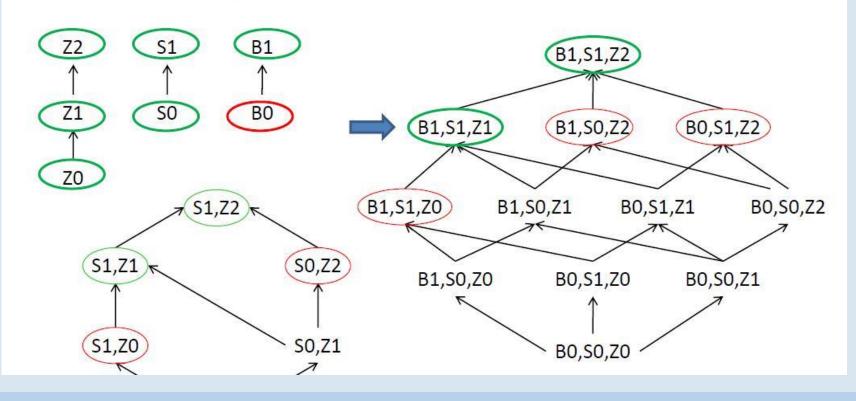
Cancer

Cancer

Further issues

Generates the set of all k-anonymous full-domain (multidimens.) generalizations. Bottom up aggregate computation

3-dimensional quasi-identifiers



Is anonymization feasible in this context?

Empirical data showed that a carefully chosen set of 45 SNPs is sufficient to provide matches with a type 1 error of 10⁻¹⁵ for most of the major populations across the globe (Pakstis et al. Candidate SNPs for a universal individual identification panel. 2007)

Alternatives:

- secure computation techniques ...
 - Secure multipart computation
- Fully homormorphic encryption

TMF – Technologie, Methods and Infrastucture for Networked Medical Research Workshop Anonymisation, March 19, 2015

AJ Pakstis et al. Candidate SNPs for a universal individual identification panel. 2007 (Hum Genet.)

BCM Fung et al. Privacy-preserving data publishing: A survey of recent developments. 2010 (ACM Computing Surveys)

Y Erlich and A Narayanan. Routes for breaching and protecting genetic privacy. 2014 (Nature Reviews Genetics)

L Sweeney. K-anonymity: a model for protecting privacy. 2002 (International Journal on Uncertainty, Fuzziness and Knowledgebased Systems)

CC Aggarwal. Privacy-Preserving Data Mining: Models and Algorithms (Advances in Database Systems). 2008 (Springer)