Undiagnosed Pediatric Diseases

Christiane Zweier Humangenetisches Institut

MEDIZINISCHE FAKULTÄT

Neurodevelopmental Disorders

- Intellectual Disability
 - Cognitive and adaptive impairment (>18y, IQ<70)
 - Prevalence 2-3%; limited therapeutic options
- Extreme clinical heterogeneity
 - Variable severity of intellectual disability
 - Variable manifestation, e.g. syndromic, non-syndromic
- Extreme genetic heterogeneity
 - ca. 20% chromosomal (micro)aberrations
 - ca. 40-50% monogenic causes (>1000 ID genes, various inheritance pattern: *de novo*, aut-dom, aut-rec, X-linked)
 - Others (e.g. mosaicism, imprinting, oligogenic)??
- Large biological/functional heterogeneity
 - Various mutational mechanisms (e.g. LOF, GOF, dominant negative)
 - Various biological processes

SysID database: http://sysid.cmbi.umcn.nl/

Search

Browse table - Abo

Search by gene symbol, entrez id, fbgn or cg number (e.g. ABCD1)

Disease info

Gene symbol	Entrez id	Gene group	Inheritance pattern	Inheritance type	Main class	Accompanying phenotype	Limited confidence	Sysic yes	Disease subtype	Alteri name	Omim disease	Hapl	Clinical synopsis
~ x	== X	==)	e == All 💌 x	== / 💌 x	~ x	~ X	== (💌 x	==	~ X	~ x	== X		~X
GPM6A	2823	ID											
ABCC9	10060	ID	Mendelian autosomal	dominant	4	F, S, U, V		1	CANTU SYNDROME	Н	239850		congenital hypertrichosis, neonatal macrosomia, distinct osteochondrodysplasia, cardi
ABCC9	10060	ID	Mendelian autosomal	dominant					CARDIOMYOPATHY, DILATED, 10; CMD10	-	608569		-
ABCC9	10060	ID	Mendelian autosomal	dominant					ATRIAL FIBRILLATION, FAMILIAL, 12; ATFB12	-	614050		
ABCD1	215	ID	Mendelian X-linked	not sure	8a, 8b	G, H, K, L2, M, P		1	ADRENOLEUKODYSTROPHY; ALD	A	300100		affects nervous system white matter and adrenal cortex, abnormal VLCFA levels; childh
ABCD4	5826	ID	Mendelian autosomal	recessive	5	M, R	1	1	METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, CBL	-	614857		2 patients, poor feeding, respiratory distress, hypotonia, lethargy, breathin anomalies; b
ABHD5	51099	ID	Mendelian autosomal	recessive	8a	M, Q, S		1	CHANARIN-DORFMAN SYNDROME; CDS	-	275630		nonbullous congenital ichthyosiform erythroderma, congenital ichthyosis, hepatospleno
ACAD9	28976	ID	Mendelian autosomal	recessive	8b	C, H, M, Q	1	1	ACAD9 DEFICIENCY	-	611126		complex 1 deficiencyl, liver disease, encephalopathy, cardiomyoapathy, neurologic dysf
ACO2	50	ID	Mendelian autosomal	recessive	2	E, G, H, L2		1	INFANTILE CEREBELLAR-RETINAL DEGENERATION; ICRD	-	614559		onset between ages 2 and 6 months, truncal hypotonia, athetosis, seizures, ophthalmo
ACOX1	51	ID	Mendelian autosomal	recessive	8b	C, E, G, H, L2, M		1	PEROXISOMAL ACYL-COA OXIDASE DEFICIENCY	S	264470		hypotonia, seizures, loss of skills, visual and hearing impairment, ID, mean age of deat
ACSF3	197322	ID	Mendelian autosomal	recessive	8b	G, H, M		1	COMBINED MALONIC AND METHYLMALONIC ACIDURIA; C	-	614265		4 adult patients: neurological manifestations (seizures, memory problems, psychiatric
ACSL4	2182	ID	Mendelian X-linked	recessive	6			1	MENTAL RETARDATION, X-LINKED 63; MRX63	-	300387		unspecific ID, 2 families moderate to severe ID, 1 family mild to moderate ID
ACTB	60	ID	Mendelian autosomal	dominant	1	A, B, E, L1, T, Ub		1	BARAITSER-WINTER SYNDROME 1; BRWS1	IR	243310		brain malformation, coloboma, ptosis, trigonocephaly, seizures, hearing loss, short stat
ACTB	60	ID	Mendelian autosomal	dominant	7		1	1	DYSTONIA, JUVENILE-ONSET	-	607371		2 twins: progressive, dopa-unresponsive generalized dystonia, cleft lip and palate, sma
ACTG1	71	ID	Mendelian autosomal	dominant	1	A, B, E, L1, T, Ub		1	BARAITSER-WINTER SYNDROME 2; BRWS2	-	614583		brain malformation, coloboma, ptosis, trigonocephaly, seizures, hearing loss, short stat
ACTG1	71	ID	Mendelian autosomal	dominant					DEAFNESS, AUTOSOMAL DOMINANT 20; DFNA20	D	604717		-
ACVR1	90	ID	Mendelian autosomal	dominant	7	A, Ub		1	FIBRODYSPLASIA OSSIFICANS PROGRESSIVA; FOP	-	135100		skeletal malformations, progressive extraskeletal ossification, mild cognitive deficits or
ADAR	103	ID	Mendelian autosomal	recessive	2, 8b	(C), I, L2		1	AICARDI-GOUTIERES SYNDROME 6; AGS6	-	615010		early-onset encephalopathy (at <18 months of age), intracranial calcification with or with
ADAR	103	ID	Mendelian autosomal	dominant					DYSCHROMATOSIS SYMMETRICA HEREDITARIA 1	D	127400	\checkmark	hyperpigmented and hypopigmented macules on the face and dorsal aspects of the ext
ADCK3	56997	ID	Mendelian autosomal	recessive	8b	C, E, G, H, L2,		1	COENZYME Q10 DEFICIENCY, PRIMARY, 4; COQ10D4	S	612016		encephalomyopathic form with seizures and ataxia; multisystem infantile form with enc
ADSL	158	ID	Mendelian autosomal	recessive	5	E, M, P		1	ADENYLOSUCCINASE DEFICIENCY	A	103050		variable, 1 patient had fatal neonatal course, 4 had severe phenotype with intractable se
AFF2	2334	ID	Mendelian X-linked	not sure	6	P		1	MENTAL RETARDATION, X-LINKED, ASSOCIATED WITH FR	F	309548		non-syndromic, mild to moderate ID, associated with learning difficulties, communicati
AGA	175	ID	Mendelian autosomal	recessive	8b	(C), G, H, M, (S)		1	ASPARTYLGLUCOSAMINURIA; AGU	-	208400		progressive ID from early childhood with minor connective tissue changes and prematu
AGPAT2	10555	ID	Mendelian autosomal	recessive	8a	K, M, Q		1	LIPODYSTROPHY, CONGENITAL GENERALIZED, TYPE 1;	B	608594		lipoatrophy, hepatomegaly, elevated triglycerides, insulin resistance, cardiomyopathy, ID
AGTR2	186	ID	Mendelian X-linked	recessive	3	E, (P)	1	1	MENTAL RETARDATION, X-LINKED 88; MRX88	-	300852		moderate to severe ID, epilepsy, 2 of 9 patients autistic
AHCY	191	ID	Mendelian autosomal	recessive	5	H, (L2), M, (Q)	1	1	HYPERMETHIONINEMIA WITH S-ADENOSYLHOMOCYSTEI	-	613752		myopathy, delayed development, elevated metabolites in plasma, hypotonia, sluggishn
AHI1	54806	ID	Mendelian autosomal	recessive	4	H, L1, O, T, W		1	JOUBERT SYNDROME 3; JBTS3	-	608629		distinctive cerebellar and brainstem malformation, molar tooth sign, hypotonia, episodi
AIFM1	9131	ID	Mendelian X-linked	not sure	8b	C, E, G, H, L2, M	1	\checkmark	COMBINED OXIDATIVE PHOSPHORYLATION DEFICIENCY	E	300816		2 patients, early onset neurodegenerative disorder, psychomotor delay, involuntary mov
AIFM1	9131	ID	Mendelian X-linked	not sure	5	G, H	1	\checkmark	COWCHOCK SYNDROME; COWCK	C	310490		early childhood onset, slowly progressive axonal sensorimotor neuropathy, some patie
AIMP1	9255	ID	Mendelian autosomal	recessive	2	B, G, H, L2	1	\checkmark	LEUKODYSTROPHY, HYPOMYELINATING, 3; HLD3	-	260600		1 family, severe neurologic disorder, global developmental delay, lack of development, I
Human denes: 10	99 Diseases: 11	83											

Dec 2017: 1069 confirmed ID genes and 711 published candidate genes

ID genes: Highly heterogeneous, yet still convergent

- 47% of ID proteins physically interact with other ID proteins
- 30% increase in connectivity compared to genome wide background
- Significant co-expression in body-wide expression data (GTEx; E=1.1, p<0.0001) and in brain (BrainSpan: E=1.04, p=0.001)
- highest co-expression in the hippocampus (BrainSpan: E=1.21, padj<0.0001)

Phenotypes can predict gene functions

functior

ID genes accompany. phenotypes

- Mapping of ID genes associated with similar phenotypes and identification of co-occurring phenotypes
- Identifies gene phenotype molecular function relationships
- Phenotypes can predict novel gene functions

 Enrichment of ID accompanying phenotypes among Gene Ontology-defined groups of ID genes relative to their occurrence among all ID genes

\rightarrow Phenotype delineation of IDopathies

What, if human phenotype data is limited?

•try the fruitfly !

- Drosophila can be used to generate custom-made phenotype data
- ID gene groups are associated with specific phenotypes in both humans and flies

ID gene properties have the power to be predictive

- Functional similarity=closer proximity within a phenotypic linkage network compared to random genes (Honti et al., Plos Comp Biol, 2014)
- ID genes can predict other ID genes by their functional coherence
- Several clinical classes and accompanying phenotypes show additive predictive power

Approach to neurodevelopmental disorders

- Systematic and detailed phenotype data
- Extensive functional data
- Molecular data (disease genes and causative variants)

(Diagnostic) testing strategies in NDDs

- Karyotyping, chromosomal microaberration analysis
 - → ca. 20%
- Targeted sequencing of individual genes
 - → <5%
- NGS Panel Sequencing
 - 25 kb panels: 5 most frequently mutated ID genes
- (Trio) Exome Sequencing
 - \rightarrow detection rate >40% (DDD study, Nature, 2017; own experience)
 - Trio (inheritance filter, mainly *de novo*)
 - Affected only (gene or variant list)
- Genome Sequencing

Screening by Exome Pool-Seq

- capture based exome + DNA-sample pooling = exome Pool-Seq
- Pilot-study: 96 patients with NDDs \rightarrow 8 Pools with 12 samples each
- cost reduction up to 85%

Exome Pool-Seq: detection rate 28%

- 13 loss-of-function variants in 398 AD/XL confirmed ID genes (11 *de novo*, 1 not maternal, 1 also affected father)
- 11 missense variants in 398 AD/XL confirmed ID genes
 (7 *de novo*, 1 not maternal, 2 hemizyguos, 1 X-linked maternal)
- 1 homozygous variant in 569 autosomal-recessive confirmed ID genes
- 3 de novo loss-of-function variants in ID candidate genes (543 published; 1.649 haploinsufficiency intolerant)

Popp et al., EJHG, in press

From candidate variant/gene to a new disease gene

- Variant segregates with suspected inheritance
 - e.g. *de novo* variant in sporadic ID
 - e.g. homozygous variant in consanguineous families
- Loss-of-function variant
- Missense variant??
 - In silico prediction
 - ExAC constraint scores
- Functional/experimental evidence
- Additional patients with similar phenotype and/or similar mutations

International Matchmaking platforms

- Single patient with severe ID and epilepsy and a *de novo* missense variant in *RHOBTB2*
- Genematcher + Decipher + emails

 \rightarrow 10 patients with developmental and epileptic encephalopathy,

microcephaly and movement disorders

Increased protein levels of mutant RHOBTB2

→ Impaired degradation of mutant RHOBTB2 in the proteasome, probably due to reduced auto-ubiquitination

Straub et al., AJHG, accepted

Epilepsy in RhoBTB overexpressing flies

Bang sensitivity

What do we need to diagnose pediatric diseases?

- State of the art sequencing (exome, genome)
- National and international collaborations (matchmaking platforms)
- Variant databases (e.g. ClinVar, LOVD)
- Interdisciplinary collaborations

- What do we need to treat pediatric diseases?
 - a cause
 - a better understanding of the underlying mechanisms and pathomechanisms

Acknowledgement

AG Zweier

- Jonas Straub
- Enrico Konrad
- Laila Distel
- Johanna Grüner
- Anne Gregor
- Christine Suchy
- Anna Fliedner

Institute of Human Genetics Erlangen

- <u>Bernt Popp</u>
- André Reis
- Arif Ekici
- Steffen Übe
- and many others

DFG Deutsche Forschungsgemeinschaft

Radboud University Nijmegen

- Annette Schenck
- Korinna Kochinke
- Bonnie Nijhof
- Misa Fenckova
- Martijn Huynen
- Pavel Cizek
- Caleb Weber, Frank Honti
- and many others

numerous clinical colleagues world-wide

