Registerbasierte randomisierte kontrollierte Studien: ein innovativer Ansatz

Registertage 2023

World Health Organization

Mid-upper arm circumference (MUAC) (mm)

☐ Yes ☐ No ☐ Unknown

Imitability / Confusion ☐ Yes ☐ No ☐ Unknown

☐ Yes ☐ No ☐ Unknown

□ No □ Unknown

□ Nose ☐ Mouth

□ Vagina

□ Sputum

☐ Urine

□ IV site

☐ Yes ☐ No ☐ Unknown

If female patient, is she pregnant? ☐ Yes ☐ No Admitted to what type of bed?

Difficulty swallowing

Abdominal pain

Diamhoea

Malignancy/Chemotherapy

including congenital disease

Chronic pulmonary disease

Chronic neurologic condition

Enlarged lymph nodes

Lower extremity oedema

Chronic heart failure

Other, specify

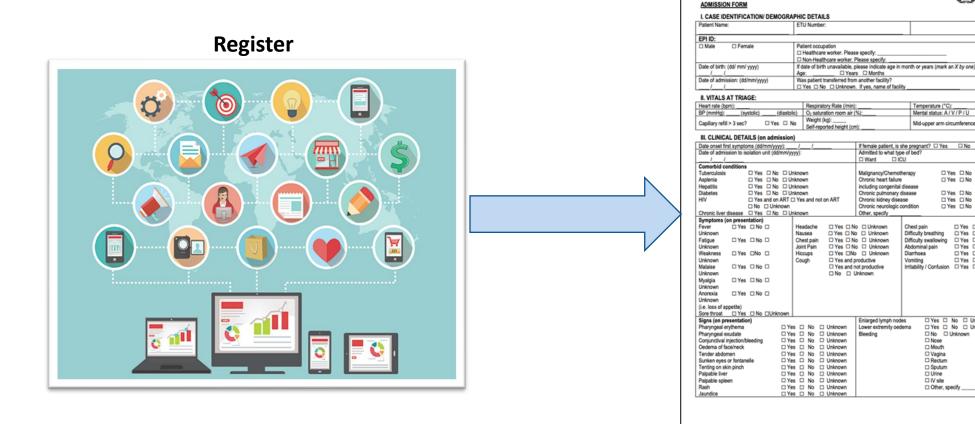
☐ Yes ☐ No ☐ Unknown

☐ Yes ☐ No ☐ Unknown

☐ Yes ☐No ☐ Unknown

☐ Yes and not productive

Yes and productive


□ No □ Unknown

eCRF

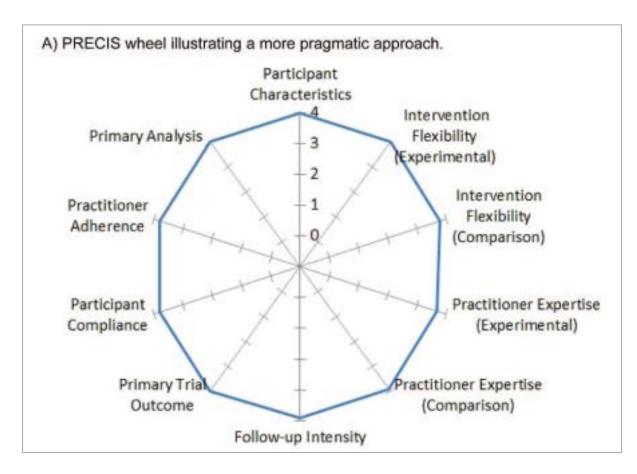
Rapid Case Management Form. Ebola Virus Disease, 28 May 2018.

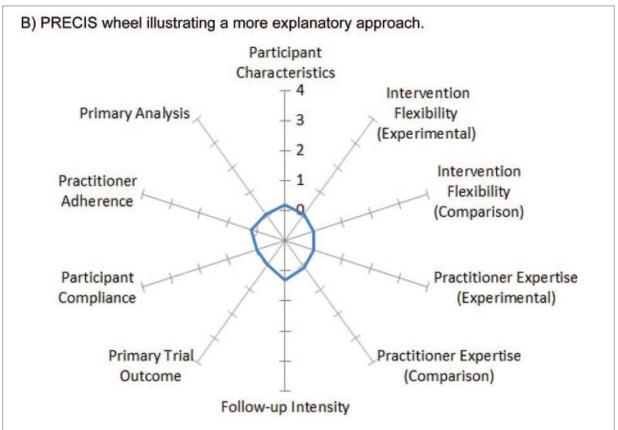
Based on WHO VHF/SARI Case Record Form 2016.

• Definition: randomisierte kontrollierte Studien (RCT) die Daten aus einem Register Nutzen (rRCT)

ORIGINAL ARTICLE

Registry-based randomized controlled trials merged the strength of randomized controlled trails and observational studies and give rise to more pragmatic trials


- Meisten Studien aus Skandinavien und den USA
- Meisten Studien in Bereich Onkologie und Kardiologie
- 45% der Studien Prävention, insbesondere Screening und Organisation/Koordination der Versorgung
- 28% Arzneimittel


UNIVERSITÄTSMEDIZIN **UMG**

Cluster rRCT ($n = 71$)	8 (11.3%)
Blinded ^a $(n = 71)$	6 (8.5%)
Included patients ($n = 65$, median,	2,000 (533–17,793;
interquartile range, range)	69–273,620)
Same number of patients analyzed as	46 (82%)
randomized ($n = 56$)	
Exclude from analysis ($n = 12$; mean, range)	5.5% (<1%-21%)
More than one registry utilized ($n = 71$)	36 (50.7%)
Number of outcomes ($n = 71$, median,	2 (1-3; 1-9)
interquartile range, range)	
Only one outcome from registry ($n = 71$)	34 (47.9%)
Primary outcome from registry ($n = 71$)	58 (81.7%)
Mortality ($n = 71$)	43 (60.6%)
Composite outcome ($n = 71$)	14 (19.7%)
Information on data quality provided	8 (11.3%)
(n = 71)	
Type of registry (patient registry; $n = 124^{b}$)	46 (37.1%)
Duration follow-up ($n = 65$, median,	5.3 yr (1.0-11.1;
interquartile range, range)	0.1-27.0)
Record linkage (unique identifier; $n = 27$)	19 (70.4%)

Grad des "Pragmatismus"

Endpunktbezogene Verzerrung/Datenqualität

Unveröffentlichte Daten

- Daten Erfassung innerhalb der Register wird in der Regel nicht (stark) zum Zweck der Studie verändert
- Anteil an fehlenden Werten kann häufig nicht bestimmt werden
- Validität der Endpunkterfassung häufig unklar
 - Aber kann als verblindet angesehen werden, da Endpunkterheber*innen nicht in Studie involviert (?)
- (Gründe) für fehlende Werte und Qualitätsmängel (z.B. inkorrekte Einträge) vermutlich gleich verteilt zwischen den Gruppen, da randomisiert

ORIGINAL ARTICLE

No differences were found between effect estimates from conventional and registry-based randomized controlled trials

Study	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	CI .	IV, Rando	m, 95% CI
Cardiac rehabilitation a	0.39204209	21.433119	446	0.06765865	16.426898	5198	0.1%	0.32 [-1.71; 2.36]			1
Cardiac rehabilitation b	-0.04082199	7.394330	446	-0.11653382	6.965515	1470	0.7%	0.08 [-0.70; 0.85]			
LCPUFA	-0.44628710	12.799010	528	-0.04082199	7.436850	1237	0.3%	-0.41 [-1.57; 0.76]			<u> </u>
Off-pump a	-0.12783337	37.387814	1239	-0.01005034	25.457762	7308	0.1%	-0.12 [-2.28; 2.04]			
Off-pump b	-0.05129329	35.225133	1239	-0.09431068	14.959970	10879	0.1%	0.04 [-1.94; 2.02]			
Prostate cancer screening a	0.33647224	209.677494	218171	0.13102826	31.975789	76685	0.5%	0.21 [-0.70; 1.11]			+
Prostate cancer screening b	0.45742485	225.895864	264107	0.20701417	14.891396	9026	0.5%	0.25 [-0.66; 1.17]		-	+
Radial access	-1.51412773	58.556446	637	-0.61618614	12.795522	12181	0.0%	-0.90 [-5.45; 3.66]	←	· · ·	
Remote ischmeic	-1.27296568	6.461474	443	-1.30933332	11.750695	329	0.2%	0.04 [-1.37; 1.44]			
Routine invasive a	-0.30110509	4.547999	2457	-0.21072103	16.299188	6458	2.3%	-0.09 [-0.53; 0.35]		-+	_
Routine invasive b	-0.35667494	2.683965	2457	-0.23572233	16.664455	7139	2.7%	-0.12 [-0.52; 0.28]			<u> </u>
Statins a	-0.31471074	1.119371	6595	-0.37106368	6.886219	41454	85.5%	0.06 [-0.02; 0.13]		, i	3
Statins b	0.07696104	14.920120	6584	-0.01005034	22.835351	32155	2.3%	0.09 [-0.35; 0.53]		-	-
Thrombus Aspiration	-0.06187540	11.569205	7244	-0.06187540	9.268244	13302	4.6%	0.00 [-0.31; 0.31]		-	
•											
Total (95% CI) 512593					224821	100.0%	0.05 [-0.02; 0.11]		į	•	
Heterogeneity: $Tau^2 = 0$; $Chi^2 = 2.39$, $df = 13$ (P = 1.00); $I^2 = 0\%$										I I	
J , -, -, -, -, -, -, -, -, -, -, -, -, -	,	, , ,							-3	-2 -1 0	1 2
										RRCT larger	Classical la

Paper II:

Thematic framework analysis of registry-based randomized controlled trials provided insights for designing trial ready registries

Karolin R Krause^{3*}, Joanne Tay^{b*}, William A Douglas^b, Adrian Sammy^b, Ami Baba^b, Katherine

Stärken

- 1. Vergleich von in rRCT eingeschlossenen Probanden mit nicht-eingeschlossenen Probanden
- 2. Große Fallzahlen
- 3. Höhere Effizienz
- 4. Höhere Generalisierbarkeit

Schwächen

- 1. Unvollständige unzureichende Registerdaten
- 2. Uneinheitliche Registerdaten
- 3. Beschränkte Nutzbarkeit der Registerdaten aufgrund von Datenschutz
- 4. Unzureichende Generalisierbarkeit

Zusammenfassung

- Scheinen (aktuell) ein geeigneter Ansatz, insbesondere für die Durchführung von pragmatic Trials (Public-Health-Interventionen, HTA, post-Marketing)
- Derzeit Nutzung für explanatory Trials (Zulassung) fraglich, da Erfüllung der Anforderung an die Daten häufig unklar (z. B. Source Data Verification)
- Können aber als Ergänzung verwendet werden (z. B. Langzeit-Follow-up).
- Register sollten bei ihrer (weiter) Entwicklung die Einbettung von rRCTs und deren potentiellen Verwendungszweck (z.B. Zulassungsstudien) berücksichtigen

References

- 1. Karolin R. et al. (2023). Paper II: Thematic framework analysis of registry-based randomized controlled trials provided insights for designing trial ready registries, Journal of Clinical Epidemiology
- 2. Loudon, K., et al. (2015). The PRECIS-2 tool: designing trials that are fit for purpose. bmj, 350.
- Mathes, T., et al. (2018). Registry-based randomized controlled trials merged the strength of randomized controlled trails and observational studies and give rise to more pragmatic trials. Journal of clinical epidemiology, 93, 120-127.
- 4. Mathes, T., et al. (2019). No differences were found between effect estimates from conventional and registry-based randomized controlled trials. Journal of clinical epidemiology, 105, 80-91.