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Three types of de-identification / anonymization

 Masking identifiers in unstructured data
• Subject: clinical notes, …
• Methods: machine learning, regular expressions, …
• Implementations: MIST, MITdeid, NLM Scrubber

 Privacy preserving data analysis (interactive scenario)
• Subject: query results, …
• Methods: interactive differential privacy, query-set-size control, …
• Implementations: AirCloak, Airavat, Fuzz, PINQ, HIDE

 Transforming structured data (non-interactive scenario)
• Subject: tabular data, …
• Methods: generalization, suppression, randomization, ...
• Implementations: AnonTool, ARX, sdcMicro, μArgus, PARAT
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Multiple aspects have to be balanced

 Main goal: Achieve a balance between data utility and privacy

 Complex task 
• Many different types of methods need to be applied in an 

integrated manner
• Methods may need to be parameterized
• Different aspects are interrelated

 Just the most important aspects and relationships
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Important aspects of use cases
 Who or what will process the data in which way?

• Humans, e.g., epidemiologists
• Different types of analyses
• Interactive vs. non-interactive

• Machines, i.e., data mining
• Classification vs. clustering

 How will the data be released?
• Access control 

• Open access vs. restricted access
• Continous data publishing 

• Multiple views vs. re-release (incremental vs. new attributes)

 Is the data distributed?
• Collaborative environments

• Vertical vs. horizontal vs. hybrid distribution
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Important properties of data

 Relational data
• Tabular data
• One row per individual

 Transactional data
• Data consisting of set-valued attributes
• Example: Follow-up collection of diagnosis codes

 Data with relational and transactional characteristics

 Dimensionality of data
• Mitigating re-identification is practically infeasible for 

high-dimensional data

 Data with clusters
• Example: household structures

 Other types of data: Trajectory data, social network data
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Privacy models: some background
 Definition of (perfect) privacy

• “Anything that can be learned about a respondent from a statistical 
database should be learnable without access to the database”

 Syntactic models
• Syntactic conditions on the released datasets
• No (direct) semantic implications regarding the above definition
• Instead: Assumptions about attack vectors and definition of (likely) 

background knowledge and goals by classifying attributes
• Direct and indirect identifiers (or quasi-identifiers, or keys)
• Sensitive and insensitive attributes

 Semantic models
• Privacy models that relax a formalization of the above definition
• Much fewer assumptions need to be made about attackers
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Risk and threat models

 Disclosure models
• Identity disclosure (re-identification, tuple linkage)
• Attribute disclosure (sensitive information disclosure)
• Membership disclosure (table linkage)

 Models for quantifying re-identification risks
• Super-population models: Population is modeled with probability 

distributions parameterized with sample characteristics
• Decision rule by Dankar et al.: Combination of three models, 

which has been evaluated for biomedical datasets

 Attacker models: May be used to derive/compile global risks
• Prosecutor scenario: Targets one specific individual
• Marketer scenario: Targets as many individuals as possible
• Journalist scenario: Targets any individual
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Syntactic models against re-identification

 Goal: Prevent linkage attacks on quasi-identifiers

 Some models for relational data
• k-Anonymity: Requires groups (cells or equivalence classes) of 

size ≥ k, which defines an upper bound on the re-identification risk 
(over-) estimated with sample frequencies

• LKC-Privacy: Relaxed variant of k-anonymity + (ℓ-diversity)
• Risk-based approaches: Enforce thresholds on re-identification 

risks, which may be quantified with super-population models
• HIPAA Safe Harbor: Heuristic with many predefined identifiers and 

a few quasi-identifiers (regions and all kinds of dates). Contains 
wildcards („any other unique identifying number, characteristic, or 
code“). Provides sound legal protection for custodians in the US

 Some models for transactional data
• (km)-Anonymity: k-Anonymity regarding ≤ m values from a set
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Syntactic models against attribute disclosure

 Observation: Preventing linkage attacks is not enough

 Goal: Prevent knowledge gain from sensitive information associated 
with an equivalence class

 Some models for relational data
• ℓ-Diversity: Sensitive values must be „well-represented”. Multiple 

variants exist with different privacy/utility trade-offs
• t-Closeness: Distribution of sensitive values must not be „too 

different“ from the overall dataset. Multiple variants exist
• p-Sensitive k-anonymity: Focus on identity & attribute disclosure
• LKC Privacy: ℓ-Diversity & relaxed k-anonymity

 Some models for transactional data
• (h, k, p)-coherence: km-anonymity + protection against inference
• ρ-Uncertainty: protection against inference with fewer 

assumptions
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Further syntactic models

 Models against membership disclosure for relational data
• Goal: Bounds on the certainty with which the presence of data 

about an individual in a database can be inferred via linkage
• Upside: With strict thresholds, they provide semantic privacy
• Downside: Basically impossible to achieve 
• δ-Presence: Relates sample counts to population counts 
• c-Confident δ-presence: Relaxation of δ-presence in which 

population characteristics are estimated

 Models for data which is relational and transactional
• (k, km)-Anonymity: Mixture of k-anonymity and km-anonymity

 Models for continuous publishing of relational data
• Approach by Byun et al.: Only supports insertions
• m-Invariance: Supports insertions, deletions, updates
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A semantic model: Differential Privacy

 Observation
• The formal notion of privacy is impossible to achieve
• Even for individuals that are not part of the statistical database

 Idea
• Do not compare an attacker's information about an individual 

before and after accessing a statistical database, but
• Compare the risks for an individual when joining (or leaving) a 

statistical database

 (Slightly) more formal
• -Differential Privacy: ϵ A (randomized) function fulfills -DP if the ϵ

probability of every possible output value changes by a factor of at 
most exp( ) when data about an individual is or is not contained in ϵ
a database.

• Relaxations: ( , ϵ δ)-DP, approximate DP
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A semantic model: Differential Privacy (cont'd)

 DP in interactive scenarios
• Sequential composition rule
• Privacy budget 

 DP in non-interactive scenarios
• Release of contingency tables or marginals
• Relationships to syntactical models exist, e.g.,

• (k, β)-SDGS: Random sampling + k-anonymity fulfills ( , δ)-DPϵ
• t-Closeness (with a specific distance function): Implies 

-DP regarding the sensitive attributesϵ
 Has been criticized in the context of biomedical research

• DP is often not a truthful mechanism: Functions are 
randomized, often data is pertubated, e.g., by adding noise

• DP is not intuitive: What is a good value for ? What does it ϵ
mean?
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Measuring data utility

 Often used interchangeably with “loss of information”

 Exemplary utility measures for syntactic models
• Used for evaluating transformed datasets

• Discernibility: Based on sizes of equivalence classes

• Average equivalence class size: Analogously to discernibility

• (Non-uniform) entropy: Information theoretic measure

• Loss: Measures the coverage of the domain of attributes

• Utility constraints: Use cases are modeled as queries

 Exemplary utility measures for Differential Privacy

• Used for evaluating a method that fulfills DP

• Error: Absolute, relative, variance

• (α, δ)-Usefulness: P[distance ≤ α] ≥ δ
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Transformation methods

 Coding models
• Global recoding: Similar transformation for similar values
• Local recoding: Different transformations may be applied

 Truthful transformations
• Generalization: Based on domain generalization hierarchies

• Full-domain generalization: All values of an attribute are 
generalized to the same level

• Subtree generalization: Different levels of generalization may 
be applied

• Suppression: Removal of values of cells or complete tuples 
• Top & bottom coding: Replacing values that exceed given 

bounds
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Transformation methods (cont'd)

 Non-truthful transformations (Pertubation)

• Post-randomization: Randomly change categories of a 
categorical variable according to predefined probabilities

• Value distortion: Multiplicative or additive noise

• Numerical rank swapping: Randomly swap values with other 
values with a rank that does not differ by more than a predefined 
threshold  

• Microaggregation: Aggregate values in one group

• Replacing values: Distribution sample or distribution itself

 Methods on a structural level
• Random sampling: Randomly select a set of tuples

• Slicing: Partition the data horizontally and vertically and creates 
links between partitions

Workshop: Anonymization tools and their practical relevance - TMF e.V. 15

An overview of state-of-the-art methods

19.03.2015

[FWF11]

[LLZ+12]

[LQS11]



Technische Universität München

Algorithms

 Transform data to meet privacy models
• Given transformation methods, data properties etc.

 Randomized algorithms
• Randomized functions for Differential Privacy
• Genetic search

 Search algorithms
• Optimal algorithms: Flash, Incognito, OLA 
• Heuristic algorithms: Top-Down-Specialization

 Clustering algorithms: Iteratively merge groups
• Data (focus on tuples): Method by Tassa et al. 
• Space (focus on taxonomies): For transactional data

 Partitioning algorithms: Iteratively split groups
• Data: Mondrian 
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Thank you for your attention!
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Further Readings
 Fung CMB, Wang K, Fu A, Yu P. Introduction to Privacy-Preserving 

Data Publishing: Concepts and Techniques. Chapman & Hall/CRC, 
ISBN: 1420091484, 2011.

 Gkoulalas-Divanis A, Loukides G, Sun J. Publishing data from 
electronic health records while preserving privacy: A survey of 
algorithms. J Biomed Inform, Vol. 50, p. 4-19, 2014

 Dankar FK, El Emam K. Practicing Differential Privacy in Health Care: 
A Review. Trans. Data Privacy, Vol. 6:1, 2013.

 Gkoulalas-Divanis A, Loukides G. Anonymization of Electronic Medical 
Records to Support Clinical Analysis. Springer. ISBN: 978-1-4614-
5668-1, 2013

 El Emam K. Guide to the De-Identification of Personal Health 
Information. Auerbach/CRC, ISBN 978-1-4665-7906-4, 2013
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