# The Role of Informatics in the Era of Precision Medicine

Jyotishman Pathak, PhD Professor & Chief, Division of Health Informatics Weill Cornell Medicine, New York December 7<sup>th</sup>, 2016 Berlin, Germany

# What is Precision Medicine?

- Precision medicine is an emerging approach for disease treatment and prevention that takes into account individual variability in lifestyle, environment, and genes.
- It is a radical shift in how each of us can receive the best care possible based on our unique makeup.



# The Precision Medicine Initiative (PMI®)

- Announced by President Barack Obama in his 2015 State of the Union address
- MISSION: To enable a new era of medicine through research, technology, and policies that empower patients, researchers, and providers to work together toward development of individualized care

#### E LUCCIOLOI MEDICINE INTELLOI



"My hope is that this becomes the foundation, the architecture, whereby in 10 years from now we can look back and say that we have **revolutionized medicine**."

—President Barack Obama

🛞 Weill Cornell Medicine 🚽 New York-Presbyterian

# The All of Us<sup>™</sup> Research Program

- •The cornerstone of the larger PMI – led by the NIH
- •One million or more volunteers, reflecting the broad diversity of the U.S.
- Opportunities for volunteers to provide data on an ongoing basis
- Data shared freely and rapidly to inform a variety of research studies

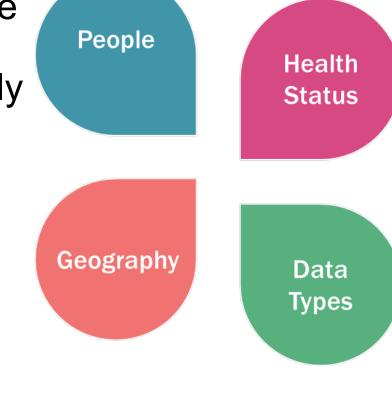


# PMI Budget for the All of Us<sup>sm</sup> **Research Program**



#### FY16 ENACTED

FY17 PRESIDENT'S REQUEST


All of Us<sup>SM</sup> | The Precision Medicine Initiative®

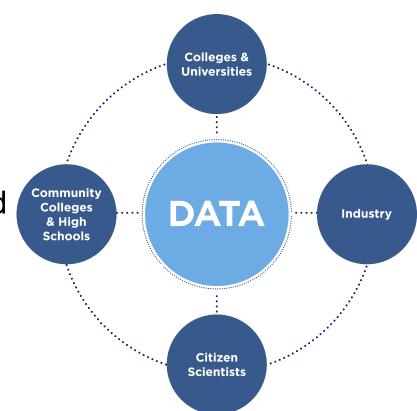
🛞 Weill Cornell Medicine 🔰 🚽 New York-Presbyteri

# A Transformational Approach to Diversity

 Reflecting the country's rich diversity to produce meaningful health outcomes for historically underrepresented communities






# A Transformational Approach to Participation

- Participants in the All of Us Research Program will be true partners—not patients, not subjects—in the research process
- Involved in every step of program development
  - What data we collect
  - What lab analyses we do
  - What research is conducted
  - How data gets returned



# A Transformational Approach to Data Access

- Data sharing will be swift to both researchers and participants
- Participants will have access to study information and data about themselves
- Data collection will start small and will grow over time
- Privacy and security will adhere to the highest standards
- Will invest to level the playing field so diverse researchers can play



# All of Us<sup>™</sup> Research Program Data

- The Program will start by collecting a limited set of standardized data from sources that will include:
  - Participant questionnaires
  - Electronic health records
  - A baseline physical evaluation
  - Biospecimens (blood and urine samples)
  - Mobile/wearable technologies
  - Geospatial/environmental data
- Data types will grow and evolve with science, technology, and trust.



# **Selected Scientific Opportunities**

- Develop quantitative **estimates of risk** for a range of diseases by integrating environmental exposures and genetic factors.
- Identify the causes of individual variation in response to commonly used therapeutics = pharmacogenomics.
- Discover biological markers that signal increased or decreased risk of developing common diseases.
- Develop solutions to health disparities.
- Use mobile health technologies to correlate activity, physiological measures, and environmental exposures with health outcomes.
- Empower **study participants** with data and information to improve their own health.
- Create a platform to enable trials of targeted therapies.

## **Established Program Infrastructure**

#### DATA AND RESEARCH SUPPORT CENTER (DRC)

Vanderbilt University Medical Center with the Broad Institute and Verily

#### BIOBANK

Mayo Clinic

#### PARTICIPANT TECHNOLOGIES CENTER (PTC)

Scripps Research Institute with Vibrent Health

#### HEALTH CARE PROVIDER ORGANIZATIONS (HPOs)

Regional Medical Centers, Health Centers (including Federally Qualified Health Center pilots), VA Medical Centers

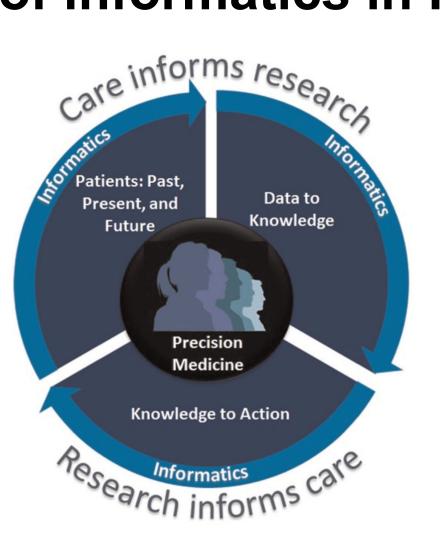
# HPOs: Regional Medical Centers (RMCs)

- Able to enroll diverse patient populations
- Strong electronic health record capacity
- Geographic spread
- Capacity to enroll 35,000 a year



# HPOs: Federally Qualified Health Centers (FQHCs) – Pilot Sites

- Develop and pilot health center approaches for enrolling underserved populations, especially those historically underrepresented in biomedical research
- A collaboration with the Health Resources and Services Administration (HRSA) and the MITRE Corporation




# HPOs: Veterans Affairs (VA) Medical Centers

- Invite veterans to enroll in the All of Us<sup>™</sup> Research Program at participating VA medical centers
- A collaboration with the Department of Veterans Affairs and the Million Veteran Program, a national, voluntary research program studying how genes affect health
- 20 participating sites anticipated



# **Role of informatics in PMI®**



[Tenenbaum et al. JAMIA 2016]

I Weill Cornell Medicine d' New York-Presbyterian

- 1. Facilitate electronic consent and specimen tracking
  - Machine-readable, and standardized consent forms
  - Infrastructure to enable participant engagement
     after enrollment
  - Infrastructure to perform role-based distributed queries over cohorts and sample collections

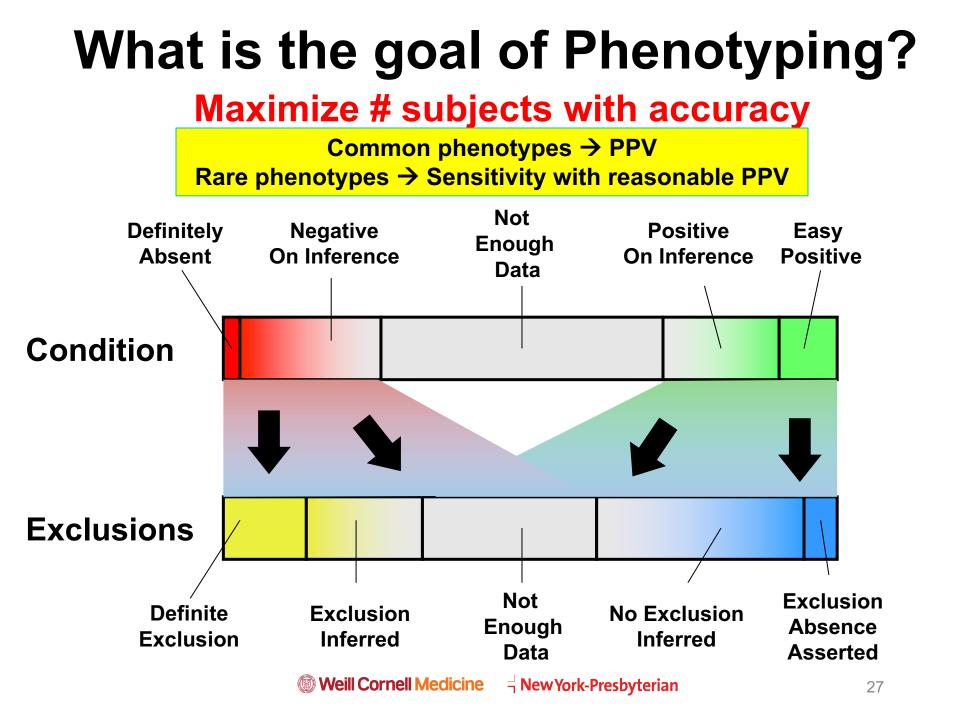
- 2. Develop and deploy standards for data privacy, security and integrity
  - Methods for de-identification, encryption and sharing of genomic and personal health record data
    - EHR data sharing is even more rare
  - Privacy-preserving data mining and computation
  - Mechanisms and policies for addressing data breach

- 3. Develop and deploy standards for data integration and exchange
  - Don't create more standards...re-use and expand existing ones
  - EHR and other clinical data mapped to common data models
    - Expand to include omics, environmental and social data
  - Federated querying capabilities
  - Sharing of health care data

- 4. Advance methods for biomarker discovery and translation
  - Computational phenotyping
    - Standardized phenotype definitions
  - Functional characterization of genes and pathways related to the biomarker for clinical utility
  - Variant annotations with actionable clinical information
  - Frameworks for evaluating clinical actionability

- 5. Processes and protocols for capturing and exchanging metadata and data provenance
  - Tools that enable implementation of standard operating procedures (SOPs) for data processing, analysis, and interpretation
  - Policies for responsible, reproducible, and reusable science
  - Metadata management capabilities for research protocols, databases, software code etc.

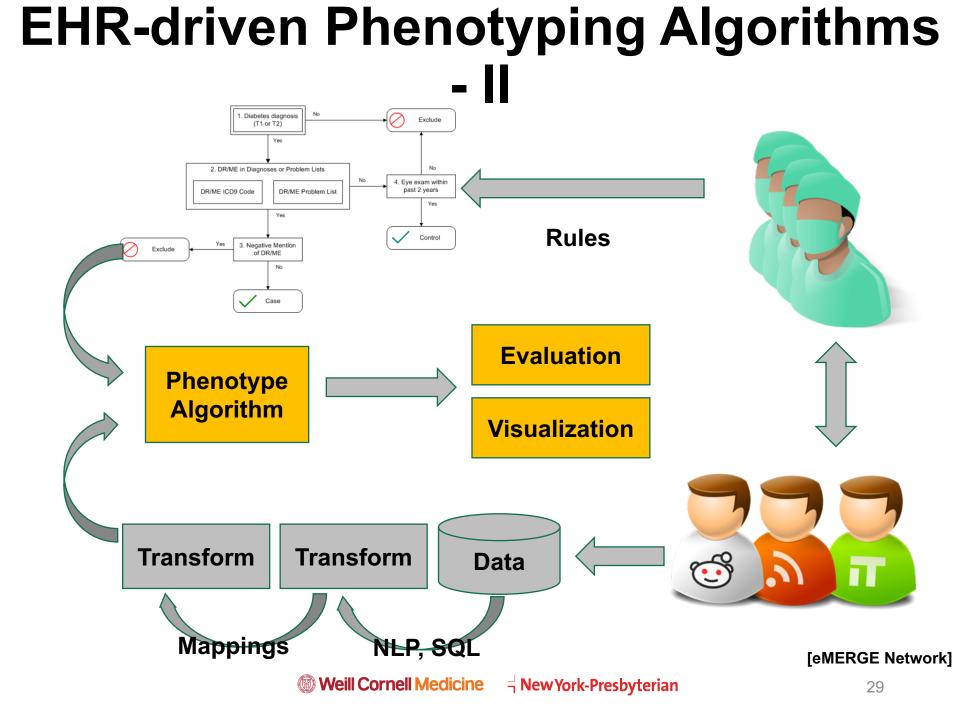
- 6. Build a precision medicine knowledge base
  - Comprehensive knowledge base that contains information about disease subtypes, disease risk, diagnosis, therapy, and prognosis
  - Machine- and human-readable representation
  - Federated querying and inferencing
  - New methodologies for updating and maintaining the integrated knowledge base


- 7. Enhance EHRs to promote precision medicine
  - Computational phenotyping
  - Integrate discrete genomic findings and interpretations in machine-readable format
  - Clinical decision support knowledge base for genome-based risk predictions, prognoses, and drug-dosing at the point of care
  - Patient portal and return of results

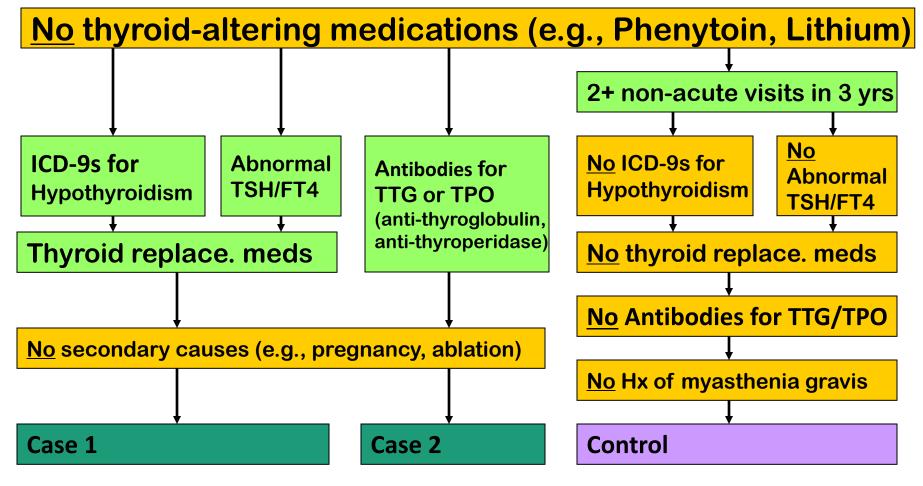
- 8. Facilitate consumer engagement
  - Collect information about person's environment and lifestyle choices
  - Address ethical, legal and social issues on data use and re-use

# Precision Medicine Informatics activities at Weill Cornell Medicine

# **EHR-driven phenotyping**


- Goal: To develop high-throughput semi-automated techniques and algorithms that operate on normalized EHR data to identify cohorts of potentially eligible subjects on the basis of disease, symptoms, or related findings
- Application areas:
  - Biomarker discovery
  - Quality reporting
  - Clinical decision support
  - Clinical trial recruitment

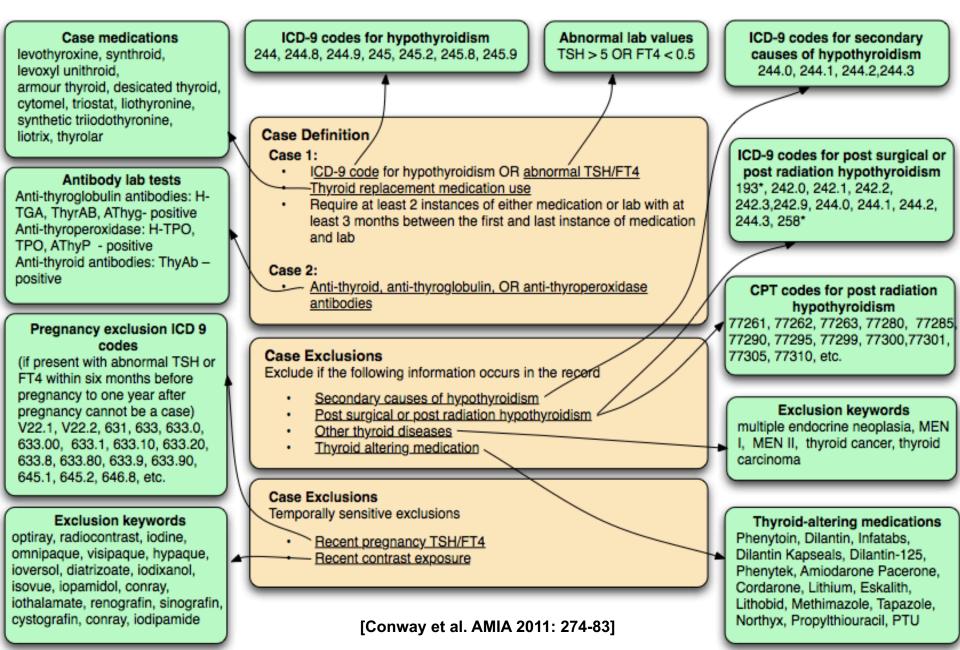



## EHR-driven Phenotyping Algorithms - I

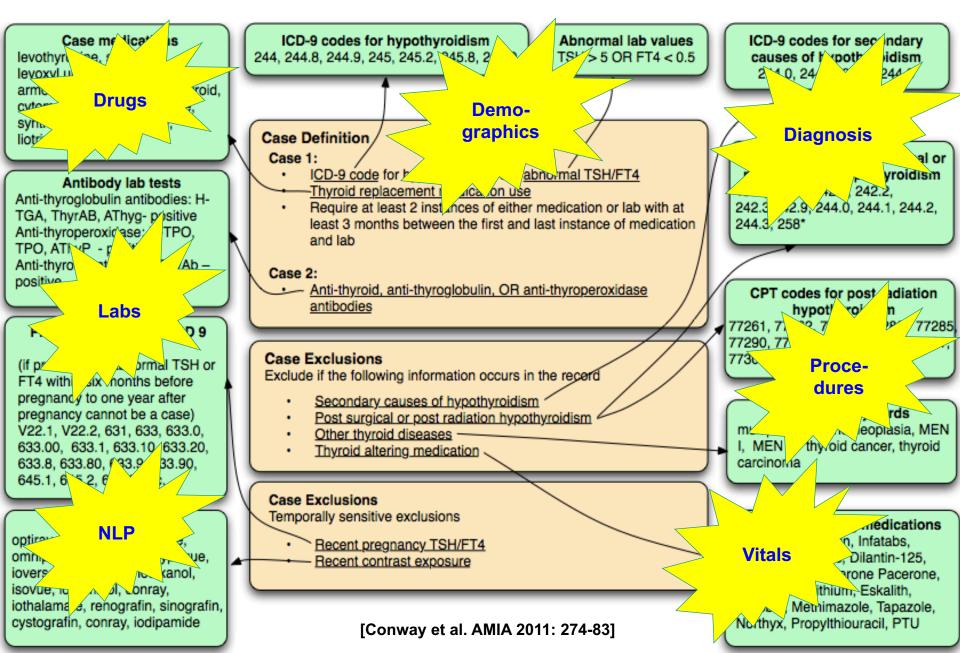
- Typical components
  - Billing and diagnoses codes
  - Procedure codes
  - Labs
  - Medications
  - Phenotype-specific co-variates (e.g., Demographics, Vitals, Smoking Status, CASI scores)
  - Pathology
  - Radiology
- Organized into inclusion and exclusion criteria

[eMERGE Network]




# Example: Hypothyroidism Algorithm



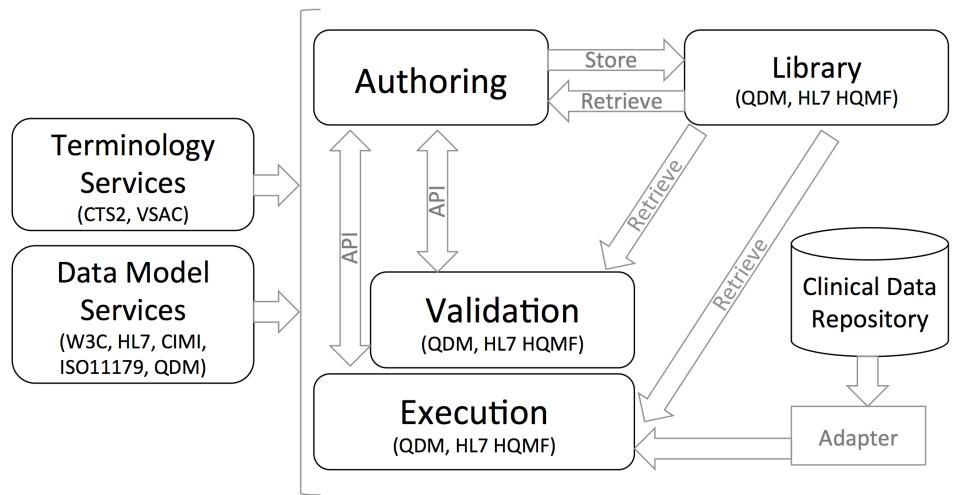

[Denny et al., ASHG, 2012; 89:529-542]

🞯 Weill Cornell Medicine 🛛 🚽 New York-Presbyterian

# **Example: Hypothyroidism Algorithm**



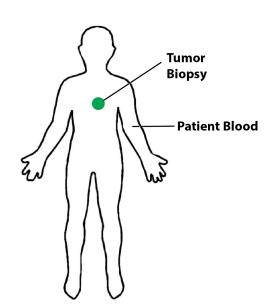
# **Example: Hypothyroidism Algorithm**



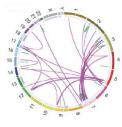

|                       | Data Categories used to define EHR-driven Phenotyping    |                                                |                           |                                                    |  |
|-----------------------|----------------------------------------------------------|------------------------------------------------|---------------------------|----------------------------------------------------|--|
| Phenotyping           | Algorithms                                               |                                                |                           |                                                    |  |
| Algorithms            | Clinical gold                                            | EHR-derived                                    | Validation                | Sensitivity                                        |  |
| U                     | standard                                                 | phenotype                                      | (PPV/NPV)                 | (Case/Cntrl)                                       |  |
|                       | Demographics, clinical                                   |                                                |                           |                                                    |  |
| Alzheimer's           | examination of mental                                    | Diagnoses,                                     | 73%/55%                   | 37.1%/99%                                          |  |
| Dementia              | status, histopathologic<br>examination                   | medications                                    |                           |                                                    |  |
| Cataracts             | Clinical exam finding<br>(Ophthalmologic<br>examination) | Diagnoses,<br>procedure codes                  | 98%/98%                   | 99.1%/93.6%                                        |  |
| Peripheral            | Clinical exam finding                                    | Diagnoses, procedure codes,                    |                           |                                                    |  |
| Arterial              | (ankle-brachial index                                    | medications,                                   | 94%/99%                   | 85.5%/81.6%                                        |  |
| Disease               | or arteriography)                                        | radiology test<br>results                      |                           |                                                    |  |
| Type 2<br>Diabetes    | Laboratory Tests                                         | Diagnoses,<br>laboratory tests,<br>medications | 98%/100%                  | 100%/100%                                          |  |
| Cardiac<br>Conduction | ECG measurements                                         | ECG report results                             | 97% (case only algorithm) | 96.9% (case<br>only algorithm)<br>[eMERGE Network] |  |

## Genotype-Phenotype Association Results

| disease              | marker                 | gene /<br>region | published 🔷 observed                                            |
|----------------------|------------------------|------------------|-----------------------------------------------------------------|
| Atrial fibrillation  | rs2200733              | Chr. 4q25        |                                                                 |
|                      | rs10033464             | Chr. 4q25        |                                                                 |
|                      | rs11805303             | IL23R            |                                                                 |
|                      | rs17234657             | Chr. 5           |                                                                 |
| Crohn's disease      | rs1000113              | Chr. 5           |                                                                 |
|                      | rs17221417             | NOD2             |                                                                 |
|                      | rs2542151              | PTPN22 -         | <b></b>                                                         |
|                      | rs3135388              | DRB1*1501        |                                                                 |
| Multiple sclerosis   | rs2104286              | IL2RA –          |                                                                 |
|                      | rs6897932              | IL7RA            | ——— <b>——</b> ———                                               |
|                      | rs6457617              | Chr. 6           |                                                                 |
| Rheumatoid arthritis | rs6679677              | RSBN1            |                                                                 |
|                      | rs2476601              | PTPN22           |                                                                 |
|                      | rs4506565              | TCF7L2           |                                                                 |
|                      | rs12255372             | TCF7L2           |                                                                 |
|                      | rs12243326             | TCF7L2           |                                                                 |
| -                    | rs10811661             | CDKN2B           |                                                                 |
| Type 2 diabetes      | rs8050136              | FTO              | <b></b>                                                         |
|                      | rs5219                 | KCNJ11           | <b></b> _                                                       |
|                      | rs5215                 | KCNJ11           | <b></b> _                                                       |
|                      | rs4402960              | IGF2BP2          | <b></b> _                                                       |
|                      |                        | 0.5              | 1.0 2.0 5.0<br>Odds Ratio [Ritchie et al. AJHG 2010; 86(4):560- |
|                      | Weill Cornell Medicine |                  |                                                                 |


#### Phenotype Execution and Modeling Architecture (PhEMA)




#### [Rasmussen et al. AMIA 2015]

# Precision Oncology at Weill Cornell Medicine

Pathology



#### DNA



Tumor and normal Genome/exome Seq Genotyping (SNP arrays) copy number alterations point mutations rearrangements indels

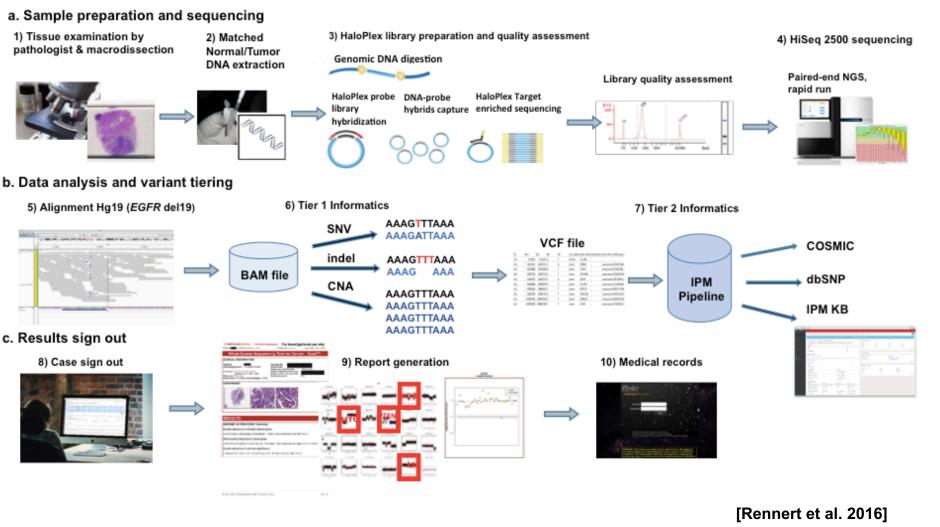
Integration of Data

**Sequencing Tumor Board** 



**Patient Specific** 

#### **Advanced cancer patient**




**RNA-seq** Gene expression Gene fusions

[Rennert et al. 2016]

# CLIA-approved whole-exome sequencing test queries >21,000 genes

#### EXaCT-1 Workflow



Weill Cornell Medicine 🚽 New York-Presbyterian

### npj | Genomic Medicine

#### ARTICLE OPEN

### Development and validation of a whole-exome sequencing test for simultaneous detection of point mutations, indels and copy-number alterations for precision cancer care

Hanna Rennert<sup>1,2</sup>, Kenneth Eng<sup>1,3</sup>, Tuo Zhang<sup>1,4</sup>, Adrian Tan<sup>1,4</sup>, Jenny Xiang<sup>1,4</sup>, Alessandro Romanel<sup>5</sup>, Robert Kim<sup>1,2</sup>, Wayne Tam<sup>2</sup>, Yen-Chun Liu<sup>2</sup>, Bhavneet Bhinder<sup>1</sup>, Joanna Cyrta<sup>1</sup>, Himisha Beltran<sup>1,6</sup>, Brian Robinson<sup>1,2</sup>, Juan Miguel Mosquera<sup>1,2</sup>, Helen Fernandes<sup>1,2</sup>, Francesca Demichelis<sup>5</sup>, Andrea Sboner<sup>1,2,3</sup>, Michael Kluk<sup>1,2</sup>, Mark A Rubin<sup>1,2,7</sup> and Olivier Elemento<sup>1,3,7</sup>

We describe Exome Cancer Test v1.0 (EXaCT-1), the first New York State-Department of Health-approved whole-exome sequencing (WES)-based test for precision cancer care. EXaCT-1 uses HaloPlex (Agilent) target enrichment followed by next-generation sequencing (Illumina) of tumour and matched constitutional control DNA. We present a detailed clinical development and validation pipeline suitable for simultaneous detection of somatic point/indel mutations and copy-number alterations (CNAs). A computational framework for data analysis, reporting and sign-out is also presented. For the validation, we tested EXaCT-1 on 57 tumours covering five distinct clinically relevant mutations. Results demonstrated elevated and uniform coverage compatible with clinical testing as well as complete concordance in variant quality metrics between formalin-fixed paraffin embedded and fresh-frozen tumours. Extensive sensitivity studies identified limits of detection threshold for point/indel mutations and CNAs. Prospective analysis of 337 cancer cases revealed mutations in clinically relevant genes in 82% of tumours, demonstrating that EXaCT-1 is an accurate and sensitive method for identifying actionable mutations, with reasonable costs and time, greatly expanding its utility for advanced cancer care.

npj Genomic Medicine (2016) 1, 16019; doi:10.1038/npjgenmed.2016.19; published online 20 July 2016

#### INTRODUCTION

Identification of genetic alterations by next-generation sequencing (NGS) has become the standard of care in genomic medicine.<sup>1</sup> Currently, numerous NGS assays and platforms are growing set of known clinically relevant mutations but also identify novel or unexpected important variations, including constitutional mutations in cancer predisposing genes, pharmacogenomics variants impacting therapy and discovery of MHC



#### Institute for Precision Medicine Report - Preliminary NewYork-Presbyterian Weill Cornell Medical Center Report date: Dec. 05, 2014

Patlent ID: PM266 Diagnosis: Clear cell carcinoma

#### **CLINICAL INFORMATION**

PM266 Patient ID: Physician: Himisha Beltran M.D. Diagnosis: Clear cell carcinoma Site: Pelvic mass Specimen IDs PM266\_ZA2\_1\_Case\_HALO (case/control) PM266\_ZC2\_1\_Ctrl\_HALO

Sample type (case/control): FFPE / FFPE Sample collected (case/control): (3/18/2014) / (3/18/2014) Sample received (case/control): (11/14/2014) / (11/14/2014) Neoplastic content: 56.6%

#### CASE IMAGES



#### RESULTS

#### GENOMIC ALTERATIONS: Summary

Somatic alterations in clinically relevant genes

A set of 49 clinically relevant genes was investigated. 2 alterations were found in these genes (listed below).

Somatic alterations of unknown significance in known cancer genes

A set of 509 known cancer genes was investigated. 8 alterations in these cancer associated genes were found (listed below).

Somatic alterations of unknown significance

13 gene(s) with point mutations or indels and 41 copy number alteration(s) were found (listed below).

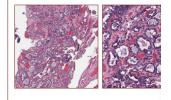
#### Clinically relevant genomic alterations

These alterations occur in genes that are deemed clinically relevant because: they are targets of drugs, they confer resistance or susceptibility to treatment, or for other clinically relevant reasons (see Appendix).

| Gene name                        | FDA approved drugs with<br>indication (if any) | Interpretation                                                                                                                                                                                                               |  |  |  |
|----------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PIK3CA<br>p.H1047L<br>VAF:72.67% | none                                           | Mutations in PIK3CA may be associated with sensitivity to PI3K inhibitors.<br>However these inhibitors are currently undergoing clinical trials and their efficacy<br>and/or lack of toxicity has not yet been demonstrated. |  |  |  |

Institute for Precision Medicine - Mark A. Rubin, M.D., Director

Page 1/6


#### In the second se



#### **CLINICAL INFORMATION**

| Patient ID:    | PM266                 |
|----------------|-----------------------|
| Physician:     | Himisha Beltran M.D.  |
| Diagnosis:     | Clear cell carcinoma  |
| Site:          | Pelvic mass           |
| Specimen IDs   | PM266_ZA2_1_Case_HALO |
| (case/control) | PM266_ZC2_1_Ctrl_HALO |

#### CASE IMAGES



#### RESULTS

| GENOMIC ALTERATIONS: Sui                         |
|--------------------------------------------------|
| Somatic alterations in clinically rele           |
| A set of 49 clinically relevant genes was invest |
| Somatic alterations of unknown sig               |
| A set of 509 known cancer genes was investig     |
| Somatic alterations of unknown sig               |
| 13 gene(s) with point mutations or indels and 4  |

#### **Clinically relevant genon**

These alterations occur in genes that are deer susceptibility to treatment, or for other clinically

| Gene name                        | FDA approved drugs wi<br>indication (if any) |
|----------------------------------|----------------------------------------------|
| PIK3CA<br>p.H1047L<br>VAF:72.67% | none                                         |

NewYork-Presbyterian Weill Cornell Medical Center

#### Institute for Precision Medicine Report - Preliminary Report date: Dec. 05, 2014

Patient ID: PM266 Diagnosis: Clear cell carcinoma

| Gene name                     | FDA approved drugs with<br>indication (if any) | Interpretation                                                                                                                               |  |  |  |
|-------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| FGFR3<br>focal amplification  |                                                | FGFR3 amplification may be associated with response to the multitargeted tyrosine kinase inhibitor pazopanib (Liao et al, 2013, Cancer Res). |  |  |  |
| VAF: variant allele frequency |                                                |                                                                                                                                              |  |  |  |

#### Notes

The status of alterations in gene(s) KRAS is indeterminate because the coverage was below the optimal levels of this method (<10 reads). Hence, analysis of the alteration(s) with an independent methodology will be performed.

#### Genomic alterations of unknown significance in cancer genes

These alterations occur in genes that are cancer associated, but their impact on the disease is unknown (see Appendix).

#### Copy number alterations

| Gene name | Description                                                                                                     | Classification of alteration | Altered region                |
|-----------|-----------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|
| FH        | fumarate hydratase                                                                                              | LARGE SCALE AMPLIFICATION    | chr1:223,533,597-249,212,519  |
| H3F3A     | H3 histone, family 3A                                                                                           | LARGE SCALE AMPLIFICATION    | chr1:223,533,597-249,212,519  |
| BCL7A     | B-cell CLL/lymphoma 7A                                                                                          | FOCAL AMPLIFICATION          | chr12:122,468,644-123,419,896 |
| STAT3     | signal transducer and activator of transcription 3 (acute-phase response factor)                                | FOCAL AMPLIFICATION          | chr17:40,039,428-40,673,093   |
| YWHAE     | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation<br>protein, epsilon polypeptide (14-3-3 epsilon) | FOCAL AMPLIFICATION          | chr17:649,687-1,968,405       |
| AKT2      | v-akt murine thymoma viral oncogene homolog 2                                                                   | FOCAL AMPLIFICATION          | chr19:39,759,400-40,947,690   |
| WHSC1     | Wolf-Hirschhorn syndrome candidate 1(MMSET)                                                                     | FOCAL AMPLIFICATION          | chr4:1,316,228-2,160,908      |

Genomic coordinates are based on human reference GRC37/hg19. Large scale alterations involve at least 50 genes.

#### Somatic mutations and indels

|     | Gene name               | Gene description                            | Classification | Reference<br>Allele | Tumor<br>Allele 1 | Tumor<br>Allele 2 | AA<br>change | Tumor<br>(Normai)<br>read depth | Tumor<br>VAF |
|-----|-------------------------|---------------------------------------------|----------------|---------------------|-------------------|-------------------|--------------|---------------------------------|--------------|
| 1.1 | ARID1A<br>chr1:27094361 | AT rich interactive domain 1A<br>(SWI-like) | nonsense       | G                   | G                 | Α                 | p.W1024<br>* | 53 (55)                         | 41.5%        |

AA: amino-acid; VAF: variant allele frequency; Genomic coordinates are based on human reference GRC37/hg19 and are 1-based.

#### Genomic alterations of unknown significance

These alterations are not known to have any effect on the disease, but are here reported in the event that in the future progress in scientific knowledge could determine their role (see Appendix).

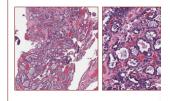
#### Somatic mutations and indels

| Gene name              | Classification   | Reference<br>Allele | Tumor<br>Allele 1 | Tumor<br>Allele 2 | AA change   | Tumor<br>(Normal)<br>read depth | Tu | mor VAF |
|------------------------|------------------|---------------------|-------------------|-------------------|-------------|---------------------------------|----|---------|
| WWC1<br>chr5:167881029 | inframe deletion | GGA                 | -                 | -                 | p.V861_nofs | 54 (44)                         |    | 100.0%  |

Institute for Precision Medicine - Mark A. Rubin, M.D.

Institute for Precision Medicine - Mark A. Rubin, M.D., Director

Page 2/6




#### NewYork-Presbyterian Weill Cornell Medical Center Institu Patient ID: F

#### **CLINICAL INFORMATION**

| Patient ID:  | PM266                 |
|--------------|-----------------------|
| Physician:   | Himisha Beltran M.D.  |
| Diagnosis:   | Clear cell carcinoma  |
| Site:        | Pelvic mass           |
| Specimen IDs | PM266_ZA2_1_Case_HALO |
|              | PM266_ZC2_1_Ctrl_HALO |

#### CASE IMAGES



#### RESULTS

| GENOMIC ALTERATIONS: Sui                         |
|--------------------------------------------------|
| Somatic alterations in clinically rele           |
| A set of 49 clinically relevant genes was invest |
| Somatic alterations of unknown sig               |
| A set of 509 known cancer genes was investig     |
| Somatic alterations of unknown sig               |
|                                                  |

13 gene(s) with point mutations or indels and 4

#### **Clinically relevant genor**

These alterations occur in genes that are deer susceptibility to treatment, or for other clinically

| Gene name                        | FDA approved drugs wi<br>indication (if any) |
|----------------------------------|----------------------------------------------|
| PIK3CA<br>p.H1047L<br>VAF:72.67% | none                                         |

Institute for Precision Medicine - Mark A. Rubin, M.D.

| → NewYork-Presbyterian<br>→ Weill Cornell Medical Center | Institute for <sup>D</sup> | Provision Modisino De        | nort Droliminary                |
|----------------------------------------------------------|----------------------------|------------------------------|---------------------------------|
| I Welli Corneli Medicai Center                           | Patient ID: PM266 Dia      | NewYork-Presbyterian         | Institute for Preci             |
| Gene name FDA approv                                     | ved drugs with             | Weill Cornell Medical Center | Patient ID: PM266 Diagnosis: Cl |

| Gene hame                  | indication (if any) |                   |
|----------------------------|---------------------|-------------------|
| GFR3<br>ocal amplification | none                | FGFR3<br>tyrosine |
|                            |                     |                   |

VAF: variant allele frequency

#### Notes

The status of alterations in gene(s) KRAS is indeterminat reads). Hence, analysis of the alteration(s) with an indepe

#### Genomic alterations of unknown s These alterations occur in genes that are cancer associat

| Copy numb       | er alterations                                                                                       |  |  |  |
|-----------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Gene name       | Description                                                                                          |  |  |  |
| FH              | fumarate hydratase                                                                                   |  |  |  |
| H3F3A           | H3 histone, family 3A                                                                                |  |  |  |
| BCL7A           | B-cell CLL/lymphoma 7A                                                                               |  |  |  |
| STAT3           | signal transducer and activator of transcription 3 (acute-p<br>factor)                               |  |  |  |
| YWHAE           | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase<br>protein, epsilon polypeptide (14-3-3 epsilon) |  |  |  |
| AKT2            | v-akt murine thymoma viral oncogene home                                                             |  |  |  |
| WHSC1           | Wolf-Hirschhorn syndrome candidate 1(MM                                                              |  |  |  |
| Genomic coordin | Genomic coordinates are based on human reference GRC37/hg19. Large                                   |  |  |  |

#### Somatic mutations and indels

| Gene name                                                                | Gene description                            | Classifi |  |
|--------------------------------------------------------------------------|---------------------------------------------|----------|--|
| ARID1A<br>chr1:27094361                                                  | AT rich interactive domain 1A<br>(SWI-like) | nonse    |  |
| AA: amino-acid: VAE: variant allele frequency: Genomic coordinates are b |                                             |          |  |

#### Genomic alterations of unknown s

These alterations are not known to have any effect on the scientific knowledge could determine their role (see Appe

#### Somatic mutations and indels

| Gene name              | Classification   | Reference<br>Allele |  |
|------------------------|------------------|---------------------|--|
| WWC1<br>chr5:167881029 | inframe deletion | GGA                 |  |

Institute for Precision Medicine - Mark A. Rubin, M.D., Director

| Gene name                 | Classification | Allele | Allele 1 | Allele 2 | AA change | (Normal)<br>read depth | Tumor VAF |
|---------------------------|----------------|--------|----------|----------|-----------|------------------------|-----------|
| PCDHA7<br>chr5:140215766  | missense       | G      | G        | т        | p.D600Y   | 80 (159)               | 32.5%     |
| LCE6A<br>chr1:152816181   | missense       | G      | G        | A        | p.R62H    | 52 (34)                | 38.5%     |
| DNAJB7<br>chr22:41257666  | missense       | G      | G        | т        | p.F111L   | 63 (67)                | 34.9%     |
| HNRNPH3<br>chr10:70101354 | missense       | т      | т        | с        | p.1263T   | 109 (104)              | 43.1%     |
| PRRC2A<br>chr6:31597056   | missense       | т      | т        | G        | p.L2222W  | 66 (62)                | 34.8%     |
| AMMECR1<br>chrX:109445692 | missense       | С      | с        | т        | p.E258K   | 105 (119)              | 28.6%     |
| PTX3<br>chr3:157160185    | missense       | G      | G        | A        | p.R188H   | 35 (22)                | 85.7%     |
| ATP10B<br>chr5:160018093  | missense       | G      | G        | т        | p.S1206R  | 93 (156)               | 26.9%     |
| IKBKAP<br>chr9:111679850  | missense       | G      | G        | A        | p.P281S   | 161 (189)              | 36.6%     |
| NABP1<br>chr2:192543814   | missense       | G      | G        | т        | p.G64C    | 187 (200)              | 41.7%     |
| INPPL1<br>chr11:71949090  | missense       | С      | с        | A        | p.P1186Q  | 51 (89)                | 33.3%     |
| ACACA<br>chr17:35603828   | missense       | G      | G        | A        | p.R792C   | 75 (115)               | 28.0%     |

AA: amino-acid; VAF: variant allele frequency; Genomic coordinates are based on human reference GRC37/hg19 and are 1-based.

#### Copy number alterations

| Location (Chr:Start-End)      | Туре                      | Number<br>of genes | Gene names (if less than 6)             |
|-------------------------------|---------------------------|--------------------|-----------------------------------------|
| chr1:108,303,451-108,313,302  | FOCAL AMPLIFICATION       | 1                  | VAV3                                    |
| chr1:1,451,428-1,534,985      | FOCAL AMPLIFICATION       | 4                  | ATAD3A; TMEM240; C1orf233; SSU72        |
| chr1:176,103,007-176,118,174  | FOCAL AMPLIFICATION       | 1                  | RFWD2                                   |
| chr1:179,955,350-180,366,693  | FOCAL AMPLIFICATION       | 6                  | too many to show                        |
| chr1:182,491,189-183,471,466  | FOCAL AMPLIFICATION       | 13                 | too many to show                        |
| chr1:201,104,865-201,358,357  | FOCAL AMPLIFICATION       | 5                  | TNNT2; IGFN1; TMEM9; PKP1; LAD1         |
| chr1:21,139,689-21,151,640    | FOCAL AMPLIFICATION       | 1                  | EIF4G3                                  |
| chr1:223,533,597-249,212,519  | LARGE SCALE AMPLIFICATION | 228                | too many to show                        |
| chr1:28,586,401-28,920,568    | FOCAL AMPLIFICATION       | 12                 | too many to show                        |
| chr1:46,511,673-46,736,392    | FOCAL AMPLIFICATION       | 5                  | LURAP1; PIK3R3; POMGNT1; RAD54L; TSPAN1 |
| chr10:133,107,486-133,748,005 | FOCAL DELETION            | 3                  | TCERG1L; FLJ46300; PPP2R2D              |

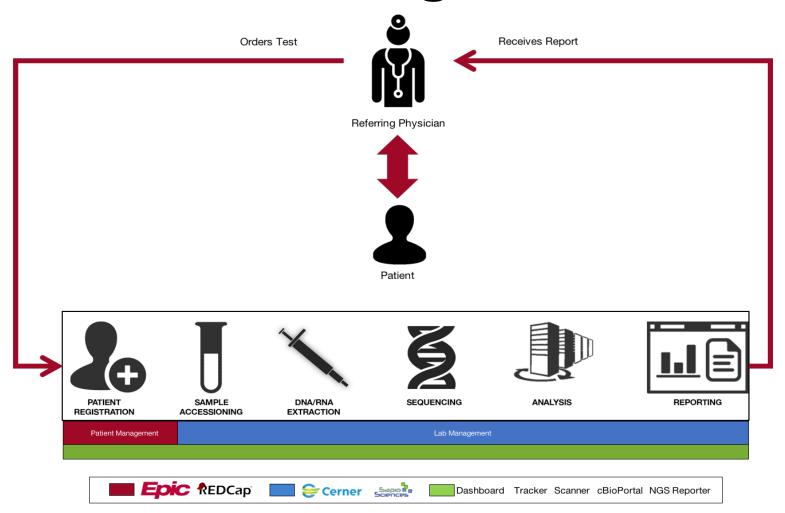
#### Institute for Precision Medicine Report - Preliminary NewYork-Presbyterian ☐ Weill Cornell Medical Center

Patient ID: PM266 Diagnosis: Clear cell carcinoma

Tumor

Tumor

Reference


Report date: Dec. 05, 2014

Tumor

| a with a |     |     |    |     |  |
|----------|-----|-----|----|-----|--|
| 000      | AA. | Oil | Co | rne |  |
| an)n     | VV  |     |    |     |  |
| 10 M     |     |     |    |     |  |

```
4,7
Page 3/6
```

# High Level Workflow for EHR integration



#### Weill Cornell Medicine diversion

## **EHR (Epic) integration**

| 😁 Hyperspace - N | YP WCIMA HELMSLEY TOWER 4FL - POC | Server                                                                      |                                                                                           |                                      |                                                     | _ 8 >                            |
|------------------|-----------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|----------------------------------|
| Epic 🔻 🏠         | Home 🐻 Schedule 🚨 In Basket 😁 C   | chart 🕘 Encounter 🦃 Telephone Call 🚦 Patient Lists 🏢                        | 🖞 Phone Book 🌘 Links 🗸 📠 Record Viewer 🤎 Remind Me 🚎 Interface Monito                     | r 😹 Search Messages 🧕 ID Maintenance | e 📙 Appts 📋 Dept Appts 🔚 View Sched 🛛 🍽 🥌 Print 🗸   | 🄑 🙆 Epic Help 🔒 Secure 🙎 Log Out |
|                  | 💽 🛃 🚭 Smith,Mary Jane             | ×                                                                           |                                                                                           |                                      |                                                     | POC SERVER Q Sear                |
| Smith, Mary      |                                   | Home: None                                                                  | PCP Name: None                                                                            | Allergies: Unknown: Not on File      | Health Maintenance: None                            |                                  |
| MRN: 12345       |                                   | Work: None                                                                  | Care Team: 🎇                                                                              |                                      | Research: None                                      |                                  |
|                  | old, 08/23/1930, 🐑                | Cell: None<br>MyChart: Inactive                                             | Pharmacy: NYC PHARMACY 10.6MU #88   88 PARK STREET                                        |                                      | Adv Dir: None<br>Outside Records: No                |                                  |
| FYI: None        |                                   | Pt Comm Prof Mono                                                           | Primary Ins.: None                                                                        |                                      | ACO Status: No                                      |                                  |
|                  |                                   | le, 85 year old, 08/23/1930, Add My Sticky Note                             |                                                                                           |                                      |                                                     |                                  |
| ( ← → 🗢          | Report Viewer                     |                                                                             |                                                                                           |                                      |                                                     | ? Resize 🗢 Close                 |
| SnapShot         | Report History 1 View Pane 1      | View Pane 2 🔚 Split Up/Down 📳 Split Left/Right 🛛 🖵                          | Detach Window                                                                             |                                      |                                                     |                                  |
| Demographics     | 106/25/2016 06:55 PM EXOME SEC    | QUENCE ANALYSIS Edited Result - FINAL                                       |                                                                                           |                                      |                                                     |                                  |
| Research Stud    | ← 2 # ⊕ 🗉 🖷                       |                                                                             |                                                                                           |                                      |                                                     | s                                |
| Care Teams       |                                   |                                                                             |                                                                                           |                                      |                                                     |                                  |
| Care realits     |                                   |                                                                             |                                                                                           | Patient:                             | Mary Jane Smith                                     | -                                |
| Chart Review     |                                   | Weill Cornell                                                               | - NewYork-Presbyterian                                                                    | MRN:                                 |                                                     |                                  |
|                  |                                   | W Medicine                                                                  | - New fork-riesbytenan                                                                    | DOB:                                 |                                                     |                                  |
| Results Review   |                                   |                                                                             |                                                                                           | SEX:                                 | Female                                              | =                                |
| Review Flows     |                                   | EXOME SEQUENCE ANALYSIS                                                     |                                                                                           |                                      | Status: Edited Result - FINAL MyChart: Not Released |                                  |
| History          |                                   |                                                                             |                                                                                           |                                      |                                                     |                                  |
| Problem List     |                                   |                                                                             | Value                                                                                     | Range                                |                                                     |                                  |
| Health Mainten   |                                   | LMNA DNA SEQUENCE VARIATION                                                 | c.1583C>C                                                                                 | Likely Germline                      |                                                     |                                  |
|                  |                                   | LMNA TRANSCRIPTSYMBOL                                                       | ENST00000368300.4                                                                         |                                      |                                                     |                                  |
| Medications      |                                   | LMNA CHROMID<br>LMNA GENESTRAND                                             | 01                                                                                        |                                      |                                                     |                                  |
| Allergies        |                                   | LMNA AMINO ACID CHANGE                                                      | p.(=)                                                                                     |                                      |                                                     |                                  |
| Immunizations    |                                   | LMNA DNA SEQUENCE VARIATION                                                 | c.1583C>A                                                                                 | Likely Somatic                       |                                                     |                                  |
| Enter/Edit Res   |                                   | LMNA TRANSCRIPTSYMBOL                                                       | ENST00000368300.4                                                                         | ,                                    |                                                     |                                  |
| Letters          |                                   | LMNA CHROMID                                                                | 01                                                                                        |                                      |                                                     |                                  |
| OIS              |                                   | LMNA GENESTRAND                                                             | +                                                                                         |                                      |                                                     |                                  |
|                  |                                   | LMNA AMINO ACID CHANGE                                                      | p.T528K                                                                                   |                                      |                                                     |                                  |
| Report Viewer    |                                   | Comments:<br>Test comment 1. Somatic mutations in                           | BRAF have been found in 1-4% of all NSCLC                                                 |                                      |                                                     |                                  |
|                  |                                   |                                                                             | and may be a potential therapeutic target                                                 |                                      |                                                     |                                  |
|                  |                                   | in some settings.                                                           |                                                                                           |                                      |                                                     |                                  |
|                  |                                   | Test comment 2. A dummy interpretati<br>BRAF DNA SEQUENCE VARIATION         | c.1799T>G                                                                                 | Likely Somatic                       |                                                     |                                  |
|                  |                                   | BRAF TRANSCRIPT SYMBOL                                                      | ENST0000288602.6                                                                          | Likely Somatic                       |                                                     |                                  |
|                  |                                   | BRAF CHROMID                                                                | 07                                                                                        |                                      |                                                     |                                  |
|                  |                                   | BRAF GENESTRAND                                                             | -                                                                                         |                                      |                                                     |                                  |
|                  |                                   | BRAF AMINO ACID CHANGE                                                      | p.V600G                                                                                   |                                      |                                                     |                                  |
|                  | 1                                 | Comments:                                                                   |                                                                                           |                                      |                                                     |                                  |
|                  |                                   |                                                                             | :.1799T>A, p.Val600Glu (V600E) mutation in<br>. carcinoma indicates that the tumor is     |                                      |                                                     |                                  |
|                  |                                   |                                                                             | With Lynch syndrome (HNPCC). However, if                                                  |                                      |                                                     |                                  |
|                  |                                   | a BRAF mutation is not detected, the                                        | tumor may either be sporadic or Lynch                                                     |                                      |                                                     |                                  |
|                  |                                   | syndrome associated. Detection of BF                                        |                                                                                           |                                      |                                                     |                                  |
|                  |                                   |                                                                             | anti-EGFR treatment. Approximately 8â€~15%<br>marbor BRAF mutations. The presence of BRAF |                                      |                                                     |                                  |
|                  |                                   |                                                                             | d with right-sided colon cancers and is                                                   |                                      |                                                     |                                  |
|                  |                                   |                                                                             | rvival. Some studies have reported that                                                   |                                      |                                                     |                                  |
|                  |                                   | patients with metastatic CRC (mCRC)<br>to anti-EGFR antibody agents cetuxin | that harbor BRAF mutations do not respond                                                 |                                      |                                                     |                                  |
|                  |                                   |                                                                             | AF V600-mutated CRCs may not be sensitive                                                 |                                      |                                                     |                                  |
|                  |                                   | to V600E targeted TKIs                                                      |                                                                                           |                                      |                                                     |                                  |
|                  | 1                                 |                                                                             | n BRAF have been found in 1-4% of all NSCLC<br>and may be a potential therapeutic target  |                                      |                                                     |                                  |
|                  |                                   | <pre>most of which are adenocarcinomas a<br/>in some settings.</pre>        | mu may be a potential therapeutic target                                                  |                                      |                                                     |                                  |
|                  |                                   | Test comment 5. A dummy interpretati                                        | on statement.                                                                             |                                      |                                                     |                                  |
|                  |                                   | BRAF DNA SEQUENCE VARIATION                                                 | c.1799T>A                                                                                 | Likely Somatic                       |                                                     |                                  |
| R. Oust          |                                   | BRAF TRANSCRIPTSYMBOL                                                       | ENST00000288602.6                                                                         |                                      |                                                     |                                  |
|                  |                                   | BRAF CHROMID                                                                | 07                                                                                        |                                      |                                                     |                                  |
| More +           | J                                 | BRAF GENESTRAND                                                             | •                                                                                         |                                      |                                                     | -                                |
|                  | (1) A 00 # 5                      |                                                                             |                                                                                           |                                      |                                                     | 2 IL D.C. 10 IL 244 D            |

#### **Weill Cornell Medicine**

# Data to be discretely stored and presented to Clinicians

- Primary Site
- Tissue Site
- Source of Material
- Gene Name
- Gene Position
- Copy Number Anomaly (CNA) (Broad vs Focal qualifier if available to be displayed here)
- Exon Number
- Coding Nucleotide Change
- Amino Acid Change
- Variant Allele Frequency (VAF)
- Interpretation
- Hyperlink to PDF report from IPM

# Controlled Vocabularies for results

- Result components will be built using elements described by the Genomic Information System (GIS) and will be associated with a LOINC number where possible
- Primary site, tissue type, histology will use SNOMED Morphology codes
- Integration with additional annotation and information from Precision Medicine Knowledge Base (PMKB) – next slide

### Precision Medicine Knowledge Base (PMKB)

| 🛞 РМКВ                                               | =                                                                                                |                                       |                                                    |                          |                                    | Login                                |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------|--------------------------|------------------------------------|--------------------------------------|
| 🏕 Home                                               |                                                                                                  |                                       | Search Knowledgebas                                | se                       |                                    | ۹                                    |
| Browse                                               |                                                                                                  |                                       |                                                    |                          |                                    |                                      |
| <b>G</b> Genes                                       | The Knowledgebase is currently in BETA.                                                          |                                       |                                                    |                          |                                    |                                      |
| V Variants                                           | Welcome to the Precision Medicine                                                                | e Knowledgebase!                      | Browse by Ge                                       | ene                      |                                    |                                      |
| <i>I</i> Interpretations                             | The Precision Medicine Knowledgebase (PMKE<br>Precision Medicine (IPM) at Weill Cornell Medic    |                                       | EGFR                                               | TP53                     | PIK3CA                             | APC                                  |
| <ul> <li>T Tumor Types</li> <li>S Tissues</li> </ul> | PMKB is organized to provide information about interpretations in a structured way, as well as a | ut clinical cancer variants and       | BRAF<br>KRAS<br>PTEN                               | NRAS<br>CTNNB1<br>CDKN2A | KIT<br>MET<br>IDH1                 | ERBB2<br>SMAD4<br>ATM                |
| + Add Variant                                        | existing entries for continued growth of the known by cancer pathologists.                       | owledgebase. All changes are reviewed | FIEN                                               | CORNZA                   |                                    | See all                              |
| + Add Interpretation                                 | All Articles                                                                                     |                                       |                                                    |                          |                                    |                                      |
|                                                      | Genes                                                                                            | 145                                   | Browse by Tu                                       | mor                      |                                    |                                      |
| 4 Activity                                           | Variants                                                                                         | 461                                   | Adenocarcinoma                                     |                          | T Lymphoblasti                     | c Leukemia/Lymphoma                  |
| 🖂 Contact                                            | Interpretations                                                                                  | 301                                   | Acute Myeloid Leukemia<br>Myelodysplastic Syndrome |                          | B Lymphoblasti<br>Myeloproliferati | ic Leukemia/Lymphoma<br>ive Neoplasm |
| III External Links >                                 | Download Information                                                                             |                                       | Chronic Myelomor                                   | nocytic Leukemia         | Papillary Carcin                   |                                      |
|                                                      | Download All Interpretations (Excel)                                                             |                                       |                                                    |                          |                                    | See all                              |
|                                                      | Entries                                                                                          |                                       | Browse by Tis                                      | sue                      |                                    |                                      |
| ✓ Genes                                              |                                                                                                  |                                       | Blood                                              | Rectum                   |                                    | Breast                               |
| ✓ Variants                                           |                                                                                                  |                                       | Bone Marrow                                        | Brain                    | /                                  | Any Tissue Type                      |
|                                                      |                                                                                                  | 0                                     | Lung                                               | Thyroid                  |                                    | Skin                                 |
| ✓ Interpre                                           | tations                                                                                          |                                       | Liolon                                             | Stomach                  |                                    | KINDAV                               |
| 🗸 Tumor T                                            | vpes                                                                                             |                                       |                                                    |                          | [Huang et                          | al. 2016]                            |
| · · · · · · · · · · · · · · · · · · ·                |                                                                                                  |                                       |                                                    |                          | - •                                | -                                    |

https://pmkb.weill.cornell.edu/

46

**Tissue Types** 

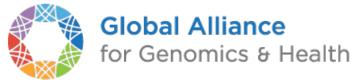
### **PMKB – BRAF Gene Variants**

| < | > []       |            | pmkb.weill.o      | cornell.edu        | C 🕇 +                                  |            |
|---|------------|------------|-------------------|--------------------|----------------------------------------|------------|
|   | J≟<br>Gene | ↓↑<br>Type | ↓†<br>Description | ↓↑<br>COSMIC<br>ID | DNA Change 1<br>(Coding<br>Nucleotide) | ↓î<br>Exon |
|   | BRAF       | any        | BRAF any mutation |                    |                                        |            |
|   | BRAF       | missense   | BRAF D594G        | COSM467            | 1781A>G                                | 15         |
|   | BRAF       | missense   | BRAF G469E        | COSM461            | 1406G>A                                | 11         |
|   | BRAF       | missense   | BRAF L597V        | COSM470            | 1789C>G                                | 15         |
|   | BRAF       | missense   | BRAF V600D        | COSM477            | 1799_1800TG>AT                         | 15         |
|   | DDAE       | missonoo   |                   | 0001/176           | 1700T A                                | 15         |

### https://pmkb.weill.cornell.edu/

### **PMKB – EFGR Interpretation 278**

| Interpretation 27 | 8 Information View History Suggested Revisions                             |
|-------------------|----------------------------------------------------------------------------|
| Variant(s)        | EGFR E709_T710delinsD<br>EGFR exon(s) 18 indel<br>EGFR exon(s) 18 deletion |
| Tumor(s)          | Adenocarcinoma<br>Non-Small Cell Lung Carcinoma                            |
| Tissue(s)         | Lung                                                                       |
| Tier              | 1                                                                          |


#### Interpretation

Somatic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are present in approximately 80% of the lung adenocarcinomas that respond to first and second generation EGFR inhibitors (eg, gefitinib, erlotinib and afatinib). Two types of mutations account for approximately 80-90% of all EGFR mutations: short in-frame deletions in Exon 19 and a point mutation in exon 21 at codon 858 (L858R). Other less common mutations in exons 18, 20, and 21 are found in 10-20% of EGFR-mutated cases. EGFR Exon 19 deletions, EGFR Exon 21 L858R mutations correlate strongly with sensitivity to specific EGFR inhibitors and the response rate to therapy with TKIs has been reported to be up to 80% in such cases. The T790M mutation in exon 20 is associated with resistance to some EGFR inhibitors. However, third generation TKI (eg, osimertinib) can specifically target T790M. EGFR exon 18 mutations account for 3.6% of all the EGFR mutations in lung adenocarcinomas. Of these, G719 mutations account for the majority of them and are sensitive to anti-EGFR TKIs in some small clinical case studies. Of note, they appeared to be more sensitive to second-generation TKIs, especially afatinib and neratinib, than to first- and third-generation TKIs based on in vitro experiments.

#### Citations

Ackerman A, et al. EGFR delE709\_T710insD: a rare but potentially EGFR inhibitor responsive mutation in non-small-cell lung cancer. J Thorac Oncol 2012;7(10):e19-20 Kebayashi X et al. EGER Even 18 Mutations in Lung Cancer: Molecular Predictors of Augmented





#### Variant Interpretation for Cancer

- Gene
- Variant
- · Cancer subtype
- Clinical implication: drug sensitivity, drug resistance, adverse response, diagnostic, or prognostic
- · Source (e.g., PubMed identifier)
- Curation group

# Audacious Goals to Help Make This Happen

- Through the *All of Us* Research Program and Institute of Precision Medicine activities at Weill Cornell, we aim to generate:
- A new model of research based on collaboration among researchers, providers, and participants
- A rich resource of data, including biospecimens, to help accelerate research advances
- Increased knowledge leading to individualized care and improved health for future generations

# It takes a village...



# Acknowledgment

- All of Us<sup>SM</sup> research team at Cornell, Columbia and Harlem Hospital
- Weill Cornell Institute of Precision Medicine
- Members of Project PhEMA
- Members of eMERGE network

## **Thank You!**



### pathak@med.cornell.edu

### http://pathaklab.com

## We're hiring: http://hpr.weill.cornell.edu