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The Challenge

Distributed Heterogeneous Data Sources
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Hospital information systems

Often more than 50GB

Cancer patient records
>160k records at NCT
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%( Prescription data

10M Patients (100 GB)

Human genome/biological data

600GB per full genome
15PB+ in databases of leading institutes

1.5B records from 10,000 doctors and
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Routine Data
Medical and
treatment costs
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Clinical trials
Currently more than 30k
recruiting on ClinicalTrials.gov Schapranow, Omics in

Human proteome
160M data points (2.4GB) per sample
>3TB raw proteome data in ProteomicsDB

PubMed database
>23M articles

Medical sensor data
Scan of a single organin 1s
creates 10GB of raw data
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Our Motivation
Turn Precision Medicine Into Clinical Routine

m Can we enable clinicians to:

o Incorporate all available patient specifics, e.g. *-omics data, lab results,

o Access latest worldwide medical knowledge, and

o Get questions answered interactively, e.g. during tumor board discussions.
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Simplified Clinical Oncology Process (1/2)
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Simplified Clinical Oncology Process (2/2)
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Our Approach:

In-Memory Computing Platform for Big Medical Data

In-Memory Computing Platform
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Our Approach: glasso
In-Memory Computing Platform for Big Medical Data Institut
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Our Approach: H
In-Memory Computing Platform for Big Medical Data Institut

Real-time Access Control, Data Exchange, Statistical
Analysis Data Protection App Store Tools
i Extensions for Life Sciences  [ALMSIGIILEE
User Profiles
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Our Approach: Hass
. . . atther
In-Memory Computing Platform for Big Medical Data Institut
Clinical Trial Pathway Topology Drug Response Cohort Medical
Oncoler Recruitment Analysis Analysis Analysis Knowledge Cockpit
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Real-time Access Control, Data Exchange, Statistical
Analysis Data Protection App Store Tools
i Extensions for Life Sciences  [ALMSIGIILEE
User Profiles
Genome Research Genome Pipeline and
Data Publications Metadata Analysis Models
Cellular . . Drugs and
Combined and Linked Data
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Reproducibility Data Processing
Modeling of Analysis Pipelines
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1. Design time (researcher, process expert)

o Definition of parameterized process model

o Uses graphical editor and jobs from repository

2. Configuration time (researcher, lab assistant)

o Select model and specify parameters, e.g. aln opts

o Results in model instance stored in repository

3. Execution time (researcher)
o Select model instance

o Specify execution parameters, e.g. input files

*!l Hasso-Plattner-Institut Design IT. Create Knowledge.

COHORT ANALYSIS PATHWAYS SIDE EFFECTS
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Logged in as matthieu.schapranow
Profile Admin Log out
i 992600
TRIAL SEARCH COHORT ANALYSIS PATHWAYS SIDE EFFECTS

{a} » Alignment

Genome file Pipeline category Pipeline PROCESS

patient_NA12878.run_SRROD0S60.fastq (333k reads ) J Optimized J [Select pipeline | ~

Recent alignment tasks

Pages: 1 2 3 4 5 6 .. 31 (30rows perpage)




App Example:
Medical Knowledge Cockpit for Patients and Clinicians

' LE

Unified access to structured
and un-structured data
sources

Automatic clinical trial
matching build on text
analysis features

m Search for affected genes in distributed and
heterogeneous data sources

m Immediate exploration of relevant information, such as

o Gene descriptions,
o Molecular impact and related pathways,
o Scientific publications, and

o Suitable clinical trials.

m No manual searching for hours or days:
In-memory technology translates searching into
interactive finding!
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App Example:
|dentification of Optimal Chemotherapy

Real-time Data Analysis and
Interactive Exploration

Smoking status, 4/ Raw DNA data

Medication efficiency
and wet lab results
(LOMB - 1GB)

tumor classification and genetic variants
and age (LOOMB - 1TB)
(1MB - 100MB)

Patient-specific

Tumor-specific Compound
Data

Data Interaction Data

m Honored by the 2015 PerMediCon Award
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J/" & Drug Response Analysis X \___ B -9

€« C' [} we.analyzegenomes.com/dra/clustering/svm_tumor Q
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Configuration Results

First step: Choose which drugs'values should be predicted

5-FU X (0

Methotrexat &o (24
Q" 9
¥ Carboplatin < ¢ oo
(o) 6(‘
Docetaxel .\Q o
@ Cetuximab \0" b2
_ N
Everolimus (& ‘\\
@‘v X\
(&)

Second step: Choose which data shouldbe factored into the prediction. You can choose a preset (click on the row) or create an own set.

Available Presets

Drug Drug Non-functional Functional Changes via Functional Changes via
Preset Name TIC Recist Changes RS Genes Age Gender T N M Grading
T/C Basic v v
Recist Basic v v
T/C Functional RS v v
Recist Functional RS v v
T/C Basic Complete v v v v VvV  /
Recist Basic Complete v v v v vV
T/C Functional RS Complete v v v v vV
Recist Functional RS v v v v v VvV
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Design IT. Create Knowledge.
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Predict Drug Responses
OR

e Classify Drug Responses

You need to define the class borders, which distinguishes effecitvity classes of drugs.
You can choose to use a predefined set, or define your own classes and save them for later use.

Available Classification Presets choose one by clicking on a table row

Preset Name Definition

Recist Basic 0.7 (good) 1.2 (stable) 2.0 (bad)
T/C Basic 25.0 (good) 60.0 (stable) 100.0 (bad)
test2 1.0 (good) 10.0 (ok) 50.0 (bad)

Custom Set Give a class a name and a class border

Keep in mind whether you want T/C or recist values to be classified, since they differ greatly in value ranges.

The lowest class border will go from 0 to the defined border.. Subsequent classes set the end of the defined class (so the class ranges from the predecessor class border to the defined border for
this class). The largest class border (= the last class) will include all values, which do not fit into any other class, so the last border value is actually not that important

Example: 25 (good), 75 (stable) and 100 (bad) - good ranges from 0-25, stable from >25 to 75, bad from >75 upwards.

Add Class: Name Border

Current Classes:

Save Class: To save this set, enter a name

Predict Drug Response
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Configuration Results

Result SVM run for Carboplatin

Drug Class Probabilities
Tumor good stable bad Actual Class

10927 0.067 0.205 0.728 bad

Result SVM run for Cetuximab

Drug Class Probabilities

Tumor good stable bad Actual Class
10927 0.200 0.331 good

cetuximab might be more
beneficial for the current case



tra nSKript Brauchen wir eine Debatte liber kiinstliche Intelligenz?

PRO > (KONTRA

30.11.2017

Prof. Dr. Roland Benedikter, Center for Advanced Studies, Eurac Research Bozen (Foto: Univ. Breslau); Dr.-Ing.
Matthieu Schapranow, Program Manager E-Health & Life Sciences, HPI, Potsdam

Wahrend der Politikanalytiker Roland Benedikter angesichts groBen Transformationspotentials eine breite
Debatte iiber kiinstliche Intelligenz fordert, wollen Forscher sie endlich nutzen diirfen.
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Stay in Contact!

Dr.-Ing. Matthieu-P. Schapranow
Program Manager E-Health & Life Sciences

Hasso Plattner Institute
August-Bebel-Str. 88
14482 Potsdam, Germany

we.analyzegenomes.com
"] @AnalyzeGenomes

Supported by:

Federal Ministry * Federal Ministry
of Education g8 fordEEconomuc Affairs
and Research and tnergy

on the basis of a decision
by the German Bundestag
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